Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

Short Text Representation for Detecting Churn in Microblogs

Hadi Amiri and Hal Daumé III
Computational Linguistics and Information Processing (CLIP) Lab
Institute for Advanced Computer Studies
University of Maryland
{hadi,hal} @umiacs.umd.edu

Abstract

Churn happens when a customer leaves a brand or stop us-
ing its services. Brands reduce their churn rates by identi-
fying and retaining potential churners through customer re-
tention campaigns. In this paper, we consider the problem of
classifying micro-posts as churny or non-churny with respect
to a given brand. Motivated by the recent success of recur-
rent neural networks (RNNs) in word representation, we pro-
pose to utilize RNNs to learn micro-post and churn indicator
representations. We show that such representations improve
the performance of churn detection in microblogs and lead
to more accurate ranking of churny contents. Furthermore, in
this research we show that state-of-the-art sentiment analysis
approaches fail to identify churny contents. Experiments on
Twitter data about three telco brands show the utility of our
approach for this task.

Introduction

Retaining customers is an important challenge for all busi-
nesses. Banks, telecommunication companies, airlines and
other businesses utilize customer churn or attrition rate as a
key business metric. Potential churners of a brand are those
customers who are at the high risk of leaving the brand and
its services. Identifying such customers, the first step of re-
tention campaigns (Huang, Kechadi, and Buckley 2012),
is crucial as the costs associated with retaining an existing
customer greatly exceed the costs of acquiring a new one.
This problem has been extensively studied on Call-Record
data (CRD) in the context of social graphs of telecommu-
nication companies (Verbeke, Martens, and Baesens 2014;
Karnstedt et al. 2010) and to a lesser extent on online gam-
ing (Kawale, Pal, and Srivastava 2009), chat and forum com-
munities (Karnstedt et al. 2011; Oentaryo et al. 2012), and
more recently on microblogs (Amiri and Daume IIT 2015).

The task of churn detection can be defined as follows:
Given a micro-post and a target brand, determine if the
micro-post is churny or non-churny with respect to the
brand. For example the following tweets are churny with re-
spect to “Brand-17: “my days with Brand-1 are numbered”,
“i am leaving Brand-1 for Brand-2!" , “Brand-1: will change
carriers as soon as contract is up.”.

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2566

Churn detection is a challenging task because of the fol-
lowing reasons (Amiri and Daume III 2015): First, the task is
target-dependent and therefore comparative micro-posts in
which users compare several brands against each other intro-
duce a challenge to this task. Second, simple language con-
stituents such as prepositions affect accurate churn detec-
tion. For example, consider the prepositions “t0”” and “from”
in “switch to Brand-1” vs. “switch from Brand-1". Third,
negation has an important contextual effect on churn detec-
tion as it simply reverse the label of a micro-posts. Fourth,
churny keywords' do not necessarily indicate churny con-
tents. For example, the micro-posts “Brand-1 to give Brand-
2 customers up to $450 to switch” or “ I need a little Brand-
1’s #help b4 leaving the states” contain the terms “switch”
and “leaving” respectively but they are not churny with re-
spect to the brands. Finally, churny contents can be ex-
pressed in subtle ways such as “debating if I should stay
with Brand-1" or “in 2 months, bye Brand-1” that contain
no obvious churny keywords.

One may suspect that an state-of-the-art sentiment anal-
ysis system can be used to identify churny contents. There-
fore, it might be enough to rely on such a system and con-
sider negative micro-posts about a target brand as churny
and positive or neutral ones as non-churny. However, this
approach fails because of the following three reasons: (a)
positive micro-posts could be churny, e.g. the tweet “hate
that i might end up leaving Brand-1 cuss they are the best
company ever” is churny even though it expresses positive
opinion about the brand, (b) neutral micro-posts could be
churny as well, e.g. the tweet “I am leaving Brand-1 on
March 7th” is churny while it’s of neutral orientation as it
does not explicitly express any positive or negative opinion
about the brand, and (c) negative micro-posts could be non-
churny, e.g. the tweet “Brand-1 cell coverage still sucks” ex-
presses a negative opinion about the brand while it’s non-
churny as it does not indicate that the user is leaving the
brand 2. In fact, our experiments shows that state-of-the-art
sentiment classifiers perform poorly on churn classification

Ysuch as: {leave, leaving, switch, switching, numbered, cancel,
canceling, discontinue, give up, call off, through with, get rid, end
contract, break up, , ... }.

Note that, although churn and sentiment detection are different
tasks, sentiment signals could be useful for detecting churny con-
tents as such contents may carry negative sentiment toward brands.

context = s(t)

y(®)
—>

s(t-1)

Figure 1: RNN for tweet representation. The recurrent con-
nection at the hidden layer allows information about previ-
ously seen words to cycle inside the network and be memo-
rized.

(see Table 1 in experiments). This result indicates that churn
and sentiment are fundamentally different concepts and new
techniques and approaches need to be developed for effec-
tive churn detection.

Motivated by the recent success of recurrent neural net-
works (RNNs) in word representation (Bengio et al. 2003;
Mikolov et al. 2013), we propose to utilize RNNs to
tackle the above problem by learning micro-post represen-
tation. We show the utility of such representations in target-
dependent churn detection in microblogs. Experiments on a
Twitter dataset created for three telecommunication brands
show an average F1 performance of 78.30% for target-
dependent churn classification in microblogs.

Micropost Representation

Artificial neural networks have been found effective in learn-
ing vectors to represent words and their similarities. In this
Section, we propose to utilize a simple recurrent neural net-
work (RNN) model, called Elman network (Elman 1990), to
represent micro-posts in such a vector space. This approach
can be used to encode tweets with arbitrary lengths into vec-
tors of fixed length through recurrent connections. The re-
sultant vectors can then be used as features for classification,
clustering, topic modeling, etc.

The Elman RNN model is shown in Figure 1. It has an
input layer x € RY™™, a hidden layer s € R™ (also called
context layer), and an output layer y € R" where v is the
size of vocabulary and m is the size of the hidden layer.
Let x(t), s(t), and y(t) represent the input to the network,
the state of the network, and the output of the network at
time ¢ respectively. Our network is provided by sequences
of words where words (along with other potentially useful
information) are given one by one to the network at each
time. In particular, at each time ¢, we create the input vec-
tor x(¢) € RYT™ by concatenating the vector of the input /
current word w € RY and the context layer vector at time
t —1,s(t —1) € R™ (see our discussion below of why
the context layer provide useful information). Note that, ini-
tially, w; = 1 where ¢ is the index of the current word in our
vocabulary and w; = 0 for all j # i.

The recurrent connection at the hidden layer allows in-
formation about previously seen words to cycle inside the
network. In fact, the hidden layer s(¢) can be thought of as

2567

a memory that remembers / represents the words that have
been observed up to time ¢. The model is independent of
the length of the input as by the time that we processed the
last word of a tweet, the context layer, s(.), can be used to
represent the entire tweet in the vector space.

Formally, the input, output, and hidden layers can be com-
puted as follows:

x(t) = [w(t),s(t = 1)] (1)
s(t) = f(Ux(t)) 2)
y(t) = g(Vs(t)) 3)

where U € R™*(*+™) and V € RV*™ are the weight ma-
trices to learn, f(.) is the sigmoid activation function:

1

= — 4
f) = - @
and g(.) is the softmax function:
eZTrL
9(om) = = (5)

g e

The above Equations are used to learn the weights and ac-
tivation of the hidden and output layers. The sigmoid func-
tion adds non-linearity to the model, while, assuming that
the output layer represents probability distribution of next
word given w(t) and context s(¢ — 1), the softmax func-
tion ensures that the probability distributions are valid, i.e.
Ym(t) > 0and Y, yi(t) = 1. The network is trained by
backpropagation through time (BPTT) (Rumelhart, Hinton,
and Williams 1988) in witch all the training data is sequen-
tially presented.

Finally, once the model is trained, for each input tweet d;
with n; words, we use the context layer vector at t = n;, i.e.
s(t = n;), to represent the tweet (we refer to this model as
tRep in experiments).

Furthermore, another approach to represent a tweet is to
compute the average word embedding for all words that ap-
pear in the tweet (we refer to this approach as wRep). This
average vector can be considered as a basic way to represent
the entire tweet and its performance can be compared against
our RNN tweet representation approach above, tRep. Fur-
thermore, we can strengthen these representations by con-
catenating them (this concatenation is referred to as twRep
in experiments).

Representation of Churn Indicators

Amiri and Daume III (2015) introduced three categories of
churn indicators: demographic, content, and context churn
indicators. Demographic indicators / features are extracted
from user profiles, while content and context indicators are
extracted from the content of micro-posts and discussion
threads respectively. Since the focus of our work is on micro-
post and content representation, we only utilize and extend
the content and context churn indicators in this research.

Representation of Content Churn Indicators

Words of an input tweet can be readily used as classification
features. As discussed above, we can also utilize vector rep-
resentation of such words, wRep, tRep, and twRep respec-
tively for classification.

In addition to bag of words features, the neighboring
words of target brands in micro-posts often contain rich con-
textual information for churn classification. We capture the
effect of neighboring words of brands / competitors by con-
sidering 2k features representing the k left and the £ right
neighboring words of the brand, and 2k neighboring-word
features for competitors (we set & = 3 as it leads to su-
perior performance in the experiments). We can also utilize
the embedding vectors of neighboring words as classifica-
tion features. Note that, since k is given, we can concate-
nate the 2k embedding vectors instead of averaging them.
Indeed this concatenation greatly improves the performance
as compared to simple averaging. We refer to this model as
NbRep in experiments.

Dependency Path We propose to effectively utilize syn-
tactic relations between words to identify expressions that
describe target brands. In particular, we introduce the con-
cept of dependency path to find such expressions and their
corresponding RNN representations. We define a depen-
dency path in a dependency tree as a sub-tree that covers the
path from the root of the tree to the target brand node and
all its children. Figure 2 shows a dependency path example
for the target “Brand-1%. A dependency path contains all the
words in an input micro-post that have some direct / indirect
syntactic relations with the target brand. We utilize words on
dependency paths and their corresponding representations
(see below) as classification features. Furthermore, to cap-
ture the negation effect, if a word on a dependency path is
negated, we include the corresponding negation dependency
to the dependency path.

We create RNN dependency features by computing a vec-
tor representation for each dependency path. For this pur-
pose, we utilize our RNN model described in previous Sec-
tion. For example, given the tweet “i want to switch from
crappy Brand-1 to Brand-2 or Brand-3”, we utilize our
RNN model to compute a representation vector for the in-
put “want switch from crappy Brand-1" obtained from the
dependency path (note that it is important to consider words
based on the order that they appear in the original tweet).
This approach can help identifying important features that
directly affect the target brand while ignoring other less im-
portant features. We refer to this model as DepRep in exper-
iments. We note that another method to combine such repre-
sentations is to average the embedding vectors of words that
appear on the dependency path. However, our experiments
show that the first approach is significantly more effective.
In the future, we aim to utilize the types of such dependency
relations for tweet representation.

Representation of Context Churn Indicators

Churny tweets may trigger discussions between users, their
friends, and brand representatives on social media platforms.

2568

Root

\L root

i
[}
|
1

want
yﬂ/\womp
Y
) .
I b, switch
Ay
aux prep
1 prep
1
to | from to
: l pobj lpobj
1
|Brand-1 Brand-2
]
: amod cc conj
i
] -
| crappy or Brand-3

Figure 2: The subtree extracted for the target “Brand-1". The
red line shows the dependency path for the target brand. We
can represent the entire tweet by computing a representation
vector for the input “want switch from crappy Brand-1" ob-
tained from the dependency path. Note that words are con-
sidered based on the order that they appear in the original
tweet.

Brands participate in such discussions to retain their cus-
tomers while competitors intervene to hunt new customers.
To capture useful information in such discussion threads,
we extract content features (as discussed in the above Sec-
tion) for each micro-post in the thread. To distinguish the
content generated by different parties in threads, in the
bag of words model we put the features into different
namespaces by adding “USer-”, “FRiend-", “BRand-", and
“COmp-" prefixes to the content features extracted from
user, friend, target brand, and competitor microposts respec-
tively (we refer to this model as Cnix in experiments). In our
RNN model, we compute four representation vectors for the
contents generated by users, friends, target brands, and their
competitors in threads respectively (we refer to the concate-
nation of these four vectors as CntxRep in experiments).
We note that there exists other churn indicators in threads.
For example, the number of brand or competitors posts in the
thread or the reciprocity between user and brand posts are
good indicators. However, we only utilize content features
and their representations from threads for fair comparison.

Churn Data

We utilize churn data provided by (Amiri and Daume III
2015)3. The data was collected from twitter for three
telecommunication brands: Verizon, T-Mobile, and AT&T.
The high inter-annotator agreement reported, Fleiss’
kappa (Fleiss 1971): 0.62, and Cohen’s kappa (Cohen 1960):
0.93, indicates that the task is fairly feasible for human anno-
tators (note that Fleiss « and Cohen & values are not directly
comparable).

Furthermore, we utilize a large dataset that contains more
than 6M tweets about the above brands as development

3www.umiacs.umd.edu/~hadi/chData/

Verizon AT&T T-Mobile

Pt RT F1F PT RT F1T Pt RT F1t
MetaMind 30.52 | 42.28 | 3545 || 1547 | 46.59 | 23.23 || 25.46 | 36.56 | 30.02
NRC 29.25 | 54.45 | 38.06 || 12.06 | 69.32 | 20.54 || 28.51 | 68.54 | 40.27
SemEvalSnt 28.49 | 5476 | 37.48 || 11.86 | 6591 | 20.10 || 28.58 | 68.37 | 40.31
TargetSnt 29.86 | 60.84 | 40.06 || 14.16 | 60.12 | 23.51 || 30.37 | 63.20 | 41.03
Unigram 58.59 | 73.41 | 65.17 || 60.46 | 7391 | 66.32 || 58.66 | 70.50 | 64.04
Unigram—+Nb | 70.51 | 77.70 | 73.70 || 79.29 | 77.41 | 77.92 || 67.39 | 71.00 | 69.15

Table 1: F1 Performance of baselines for churn classification (reported for the churn class).

dataset. We note that, naturally, churny contents occur less
frequently than non-churny contents and as such we believe
our development dataset is highly imbalanced in terms of
churny and non-churny tweets. We will further discuss the
effect of balanced and imbalanced data in experiments.

Experimental Results

We employ two state-of-the-art classification approaches for
churn classification in microblogs. In particular, we consider
the hinge loss (employed by the SVMs) and the logistic loss
(representing logistic classifier). We employ Vowpal Wabbit
classification toolkit* with all parameters set to their default
values to perform the classification experiments.

In the experiments, we report classification performance
(F1-score) over the churn class. We performed all the exper-
iments through 10-fold cross validation and used the two-
tailed paired t-test p < 0.01 for significance testing. Here,
we use the asterisk mark (*) to indicate significant improve-
ment over baselines.

We use our development dataset to learn our RNN model
for tweet representation. For this, we set the size of hidden
layer to m = 128 in the experiments. We note that greater
values of m may lead to higher performance.

Performance of Baselines

We study the performance of the state-of-the-art sentiment
classification approaches as well as n-gram models to de-
termine a strong baseline for this task. For sentiment base-
lines, we treat positive or neutral tweets about a brand as
non-churny and negative tweets as churny. We consider the
following baselines in this study:

Baseline-1 (MetaMind): We consider the twitter senti-
ment classifier of MetaMind as our first baseline >. This clas-
sifier is an accurate sentiment classifier that is trained over
331K general tweets and has an accuracy of 81.73% for sen-
timent classification.

Baseline-2 (NRC) (Mohammad, Kiritchenko, and Zhu
2013): NRC is the top-ranked Twitter sentiment classifier of
SemEval 2013. It deploys an SVM classifier with linear ker-
nel in conjunction with a wide range of features (see details
below).

Baseline-3 (SemEvalSen) This baseline is an ensem-
ble learning approach that combines several state-of-the-

*http://hunch.net/~vw/
>https://www.metamind.io/classifiers/155

2569

art Twitter sentiment classification approaches that partic-
ipated in the “Sentiment Analysis in Twitter” task of Se-
mEval 2015. These approaches are NRC-Canada (Moham-
mad, Kiritchenko, and Zhu 2013) (baseline-2), GU-MLT-
LT (Giinther and Furrer 2013), and KLUE (Proisl et al.
2013). They utilize various features for effective sentiment
analysis on tweets including n-grams, sentiment lexicons,
punctuations, emoticons and abbreviations, word lengthen-
ing, tweet clustering, and techniques for handling negations.
The approaches are combined in an ensemble by averaging
the individual classifier confidence scores to determine the
resultant sentiment of tweets (Hagen et al. 2015).

Baseline-4 (TargetSen): The above approaches are
target-independent sentiment classifiers and as such may as-
sign irrelevant sentiment to tweets and target brands (espe-
cially for comparative micro-posts in which several brands
are compared against each other). As our fourth sentiment
baseline, we consider the approach proposed by Jiang et al.
(2011) for target-dependent Twitter sentiment classification.
This approach utilizes most of the aforementioned features
as well as target-dependent features obtained from depen-
dency relations between words and target brands in tweets.
Furthermore, this approach incorporates similar tweets for
more effective sentiment classification with respect to a
given target (not utilized in this paper).

Baseline-5 (unigram-+Nb): We experimented with dif-
ferent ngrams (n={1,2,3}) and their combination at the word
and character levels (Amiri and Daume III 2015). We found
that the combination of unigrams and neighboring words
(see Section 3) leads to the best performance. Thus, we con-
sider this setting as a strong baseline for this task (and refer
to it as unigram-+Nb).

The performance of the above approaches are reported in
Table 1 respectively. The results clearly indicate that sen-
timent classifiers are not effective for churn classification.
As discussed before, we attribute this result to the fact that
objective contents could potentially be churny while subjec-
tive contents might be non-churny. Sentiment classifiers fail
to capture such differences.

Performance of RNN Representation

Tables 2 shows the Macro-average F1 Performance for Bag
of Words (BOW) and RNN models evaluated on all three
brands, Verizon, AT&T, and T-Mobile. The rows show the
performance of corresponding features for the two models
(presented on the left and right sides of the Table respec-
tively). In Tables 2, significance test reports (shown by *) in-

BOW RNN

BOW Features hinge | logistic || hinge logistic RNN Features

6297 | 63.73 tRep

(1) | unigram 65.30 | 64.30 59.97 61.37 wRep
66.13% | 66.20% twRep

(2) | unigram+Nb 73.63 | 72.17 71.07 | 73.90* twRep+NbRep
(3) | unigram+Dep 7240 | 71.80 75.66% | 75.43% twRep+DepRep
(4) | unigram+Cntx 74.27 73.20 75.47% | 75.03% twRep+CntxRep
(5) | unigram-+Nb+Dep+Cntx | 77.03 75.60 76.77 77.56* | twRep+NbRep+DepRep+CntxRep

[(6)] BOW-+RNN: hinge: 78.30, logistic: 78.15 |

Table 2: Macro-average F1 Performance for all three brands. The performance is reported for the churn class. The average F1
improvement in the BOW model is 3.3% and the corresponding improvement for the RNN model is 4.68% as compared to the
baseline (unigram+Nb and twRep+NbRep respectively). Significance test (indicated by *) indicate the cases where our RNN
model significantly outperforms the BOW model for the same classification approach and configuration row.

dicate the cases where our RNN model significantly outper-
forms the BOW model for the same classification approach
and configuration row.

Row (1) shows the performance of unigram model and our
RNN-based representation models. Recall that tRep, wRep,
and twRep show the performance when we use context layer
vectors, average word embeddings, and their concatenation
for tweet representation respectively. As the results show,
tRep produces a comparable performance to unigrams while
it only uses a feature space of length m = 128 (as compared
to the length of vocabulary in case of unigrams) for clas-
sification. The concatenation of tRep and wRep, i.e. twRep,
leads to significantly higher performance than unigrams.

We expected greater improvement by our RNN model.
The small improvement is because of the fact that our RNN
model is trained over a heavily unbalanced (in terms of
churny and non-churny tweets) development dataset. We
used an unbalanced development dataset to evaluate the
performance of our model in real world situations. Even
with such an unbalanced development dataset, the twRep
model significantly outperform unigrams across all the three
brands. In the next Section, we show that a more balanced
development dataset will improve the representation power
of our RNN models.

Row (2) shows that the combination of unigrams and
neighboring words greatly improves the performance in
both BOW and RNN models. This improvement is because
neighboring word features capture word orders and pro-
vide more context information. In case of RNN representa-
tions, we observed higher performance by concatenating the
neighboring word vectors instead of averaging them. This
result and the performance of wRep suggests that averaging
word vectors (in contrast to concatenating them) may lead
to information loss and inversely affect the performance.

Row (3) shows that dependency relations improve the per-
formance over unigrams with greater improvement in the
RNN model. The higher improvement in case of RNN rep-
resentations is due to vector representation through depen-
dency paths. In fact, as discussed before, dependency paths
help to extract important features that directly affect the tar-
get brand and ignore other less important features.

2570

Row (4) shows that adding context indicators (Cntx and
RepChnix respectively) to the unigram features and RNN rep-
resentations improves the performance and outperform the
unigram+Nb and twRep+NbRep models respectively. This
indicates that discussion threads provide useful information
for churn detection.

Row (5) shows that combining all content and context
features in each category improve the performance over the
baseline in both models. The average improvement in the
BOW model is 3.3% F1 score and the corresponding im-
provement for the RNN model is 4.68% as compared to their
corresponding baselines (unigram+Nb and rwRep+NbRep
respectively). Finally, row (6) shows that the combination
of BOW and RNN representation models leads to the best
performance.

Performance of RNNs with Balanced Data

In this Section, we evaluate the effect of a balanced de-
velopment dataset on the performance of our RNN model
for churn detection. To obtain a development dataset that is
more balanced, we first utilized the best performing classi-
fier above (SVMs, see row (6) in Table 2) to label each tweet
in our large development dataset as churny or non-churny.
Based on the classification results, the ratio of churny vs.
non-churny tweets in our original development dataset is
0.025 that indicates our original development dataset is
highly imbalanced. Then, we created a more balanced de-
velopment dataset by considering all tweet that were labeled
as churny in conjunction with an equal number of randomly
selected tweets that were labeled as non-churny. This dataset
contains more than 300K tweets.

We repeated our experiments with this new development
dataset. Table 3 shows the results: our tRep model alone out-
performs the unigram model using more balanced develop-
ment dataset. As Table 3 shows this consideration also im-
proves the performance of wRep and twRep models respec-
tively. This improvement is because of the more balanced
development dataset that allows our RNN model to learn
more accurate representation of churny micro-posts.

RNN Features hinge logistic
(1) | tRep 65.93 67.23
(2) | wRep 60.47 62.01
(3) | twRep 67.77 68.27
(4) | twRep+NbRep 74.23 75.89

Table 3: Macro-average F1 Performance for all three brands
with balanced development data.

Ranking Performance

Marketing departments of brands would often want to inves-
tigate the most churny tweets first. As such, we propose to
evaluate the performance of churn detection approaches in
terms of their ranking of churny tweets. We expect a good
churn detection model to rank the most churny tweets higher
in its ranking list of churny tweets. For this evaluation, given
the output of a classification model, we rank tweets that
have been labeled as churny based on the predicted values
of our classifiers (i.e. probability scores produced by the lo-
gistic classifier or confidence values predicted by SVMs).
We can then plot an interpolated precision-recall diagram
(Baeza-Yates and Ribeiro-Neto 1999) to evaluate the qual-
ity of different rankings. Figure 3 shows the results for
unigram+Nb and twRep+NbRep churn classification mod-
els averaged over all the three brands. As the results show,
at higher ranks (i.e. lower recall values) rwRep+NbRep has
greater precision than unigram+Nb. This indicates that the
twRep+NDRep model ranks true churny tweets higher in the
list and as such produces a better ranking of churny tweets
as compared to the baseline, unigram-+Nb.

Related Work

The problem of churn classification has been studied on
Call-Record data (CRD) where the input is a social graph
in which nodes are customers and edges show communi-
cations / telephone calls between nodes (Verbeke, Martens,
and Baesens 2014; Huang, Kechadi, and Buckley 2012;
Karnstedt et al. 2010). Various indicators have been shown
to be important for effective churn detection on CRD. These
include node-specific information such as user age, gen-
der, bill frequency, account balance, outstanding charges
and historical information of bills and payments, as well as
network-specific features including information about calls,
such as call duration and prices, and information about in-
coming and outgoing calls and the parties involved.

Churn detection has also been studied in the context of on-
line gaming (Kawale, Pal, and Srivastava 2009) and chat and
forum communities (Dror et al. 2012; Karnstedt et al. 2011;
Oentaryo et al. 2012; Patil et al. 2013) where the purpose
is to detect if a user stops playing a game or leaves a chat
forum. Churn classification in these domains also utilized
various user-specific features such as age, gender, and rate
of activity, as well as features obtained from social relations
between people and their interactions.

Recently Dave et al. (2013) presented a churn classifier
for recommender systems in which they aimed to predict if a
user returns to use a target product after his / her initial expe-

2571

unigram+Nb twRep+NbRep

0.85

Precision

0 0.1 0.2 0.3 0.5 06 0.7 0.8

0.4
Recall

Figure 3: Interpolated Precision-Recall for a ranked list of
churny tweets. Note that interpolated precision at recall r is
defined as the highest precision found for any recall ' > r.

rience with the product. The approach utilizes user-specific
features such as user ratings and the time that users spend on
items to predict churn.

Despite the numerous applications of user retention and
the availability of public user generated contents in mi-
croblogs, target-specific churn classification appears to be
under-explored in microblogs. In fact, microblog platforms
provide information about different aspects of brands that
can be effectively utilized to identify potential churners. Re-
cently Amiri and Daume III (2015) studied the problem of
churn detection in microblogs in which they aimed to utilize
user generated contents to predict churn. As discussed here,
they introduced several important churn indicators.

In this work, we focused on the language modeling and
evaluation aspects of churn in microblogs and presented
models for tweet and churn indicator representation. Fur-
thermore, we showed that the task is fundamentally differ-
ent from sentiment analysis and as such new techniques and
methods need to be developed for target-dependent churn
detection in microblogs.

Conclusion and Future Work

We investigated the problem of target-dependent churn clas-
sification in microblogs. We proposed a simple recurrent
neural network to represent tweets through fixed-length vec-
tors and utilized the resultant representations for churn clas-
sification. Furthermore, we examined and extended factors
that make churn detection in microblogs more accurate.

As our future work, we aim to further investigate this
problem from the content representation perspective. For
example, consider the churny tweet “Brand-1 great new
#moreofnothing plans! can’t wait until match 7th to switch.*
This tweet not only indicates a potential churn but also its
time frame. We aim to extend our models to predict the time
that churn will be happening. Furthermore, we observed that
syntactic relations between words are highly important in
capturing the complexity of churny language. In the future,
we aim to develop techniques to utilize the types of depen-
dency relations to capture such complex effects.

References

Amiri, H., and Daume III, H. 2015. Target-dependent churn
classification in microblogs. In Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence.

Baeza-Yates, R., and Ribeiro-Neto, B. 1999. Modern infor-
mation retrieval, volume 463. ACM press New York.
Bengio, Y.; Ducharme, R.; Vincent, P.; and Janvin, C. 2003.

A neural probabilistic language model. J. Mach. Learn. Res.
3:1137-1155.

Cohen, J. 1960. A coefficient of agreement for nom-
inal scales. Educational and psychological measurement
20(1):37-46.

Dave, K. S.; Vaingankar, V.; Kolar, S.; and Varma, V. 2013.
Timespent based models for predicting user retention. In
Proceedings of the 22nd international conference on World
Wide Web, 331-342. International World Wide Web Confer-
ences Steering Committee.

Dror, G.; Pelleg, D.; Rokhlenko, O.; and Szpektor, I. 2012.
Churn prediction in new users of yahoo! answers. In Pro-
ceedings of the 21st international conference companion on
World Wide Web, 829-834. ACM.

Elman, J. L. 1990. Finding structure in time. COGNITIVE
SCIENCE 14(2):179-211.

Fleiss, J. 1971. Measuring nominal scale agreement among
many raters. Psychological Bulletin 76(5):378-382.

Giinther, T., and Furrer, L. 2013. Gu-mlt-1t: Sentiment anal-
ysis of short messages using linguistic features and stochas-
tic gradient descent.

Hagen, M.; Potthast, M.; Biichner, M.; and Stein, B. 2015.
Webis: An ensemble for twitter sentiment detection. In Pro-
ceedings of the Ninth International Workshop on Semantic
Evaluation (SemEval).

Huang, B.; Kechadi, M. T.; and Buckley, B. 2012. Customer
churn prediction in telecommunications. Expert Syst. Appl.
39(1):1414-1425.

Jiang, L.; Yu, M.; Zhou, M.; Liu, X.; and Zhao, T. 2011.
Target-dependent twitter sentiment classification. In Pro-
ceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies
- Volume 1, HLT 2011, 151-160. Stroudsburg, PA, USA:
Association for Computational Linguistics.

Karnstedt, M.; Hennessy, T.; Chan, J.; Basuchowdhuri, P.;
Hayes, C.; and Strufe, T. 2010. Churn in social networks.
In Furht, B., ed., Handbook of Social Network Technologies
and Applications. Springer US.

Karnstedt, M.; Rowe, M.; Chan, J.; Alani, H.; and Hayes,
C. 2011. The effect of user features on churn in social net-
works. In Proceedings of Web Science. ACM.

Kawale, J.; Pal, A.; and Srivastava, J. 2009. Churn pre-
diction in mmorpgs: A social influence based approach. In
Proceedings of International Conference on Computational
Science and Engineering. IEEE Computer Society.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and

2572

phrases and their compositionality. In Burges, C.; Bot-
tou, L.; Welling, M.; Ghahramani, Z.; and Weinberger, K.,
eds., Advances in Neural Information Processing Systems
26. Curran Associates, Inc. 3111-3119.

Mohammad, S. M.; Kiritchenko, S.; and Zhu, X. 2013. Nrc-
canada: Building the state-of-the-art in sentiment analysis of
tweets. In Proceedings of the Seventh International Work-
shop on Semantic Evaluation (SemEval).

Oentaryo, R. J.; Lim, E.-P; Lo, D.; Zhu, E.; and Prasetyo,
P. K. 2012. Collective churn prediction in social network.
In Proceedings International Conference on Advances in So-
cial Networks Analysis and Mining.

Patil, A.; Liu, J.; Shen, J.; Brdiczka, O.; Gao, J.; and Hanley,
J. 2013. Modeling attrition in organizations from email
communication. In Social Computing (SocialCom).

Proisl, T.; Greiner, P.; Evert, S.; and Kabashi, B. 2013. Klue:
Simple and robust methods for polarity classification. In
Proceedings of the Seventh International Workshop on Se-
mantic Evaluation (SemEval).

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1988.
Neurocomputing: Foundations of research. Cambridge,
MA, USA: MIT Press. chapter Learning Representations
by Back-propagating Errors, 696—699.

Verbeke, W.; Martens, D.; and Baesens, B. 2014. Social net-
work analysis for customer churn prediction. Applied Soft
Computing 14,C(0):431-446.

