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Introduction.

Risk factors such as body weight, blood pressure, and blood cholesterol can help people make informed decisions
about their health promotion efforts. Food choices are among the most effective of these efforts which can help
preventing chronic diseases, such as heart disease, diabetes, stroke, and certain cancers[6]. Since different foods provide
different energy and nutrients, healthy eating requires monitoring the nutrients that we consume. In addition, food
offers new perspectives on topical challenges in Natural Language Processing and Computer Vision centering around
computational models to extract nutrition facts from food-relevant textual content[1] or find representations that are
robust to occlusion and deformation in processing of food images[2]. In fact, there is an emerging literature investigating
Food Computing which aims to acquire and analyze food data from disparate sources for recommending and monitoring
food consumption as well as addressing food-related issues in medicine, biology, gastronomy, and agronomy[7]. The
availability of large-scale food datasets and the above recent advances in Food Computing can transform the way that
individuals consume food. Established in the literature is the ability to match foods with databases that contain nutrition
facts[1]. These approaches are effective for foods that exists in databases, but lack the ability to deal with large amount
of new foods that don’t exist in such databases; as reported in[5], the average number of new foods per year is slightly
less than 20K. In addition, there is a dearth of evidence as to whether learning food ingredients can help more accurate
estimation of nutrition facts. Therefore, the aim of our study is two fold: (1) to develop effective computational models
that accurately estimate nutrition facts of any given food, and (2) to investigate if computational modeling of food
ingredients can help better estimation of nutrition facts.

Figure 1: Proposed multi-task learning framework for joint
learning of nutrition facts and ingredients.

Data Description. The USDA branded food products
database[4] contains food description, nutrition facts, and
ingredients for a large number of foods which are volun-
tarily supplied by food industry organizations to USDA.
USDA standardizes the reported nutrition facts by calcu-
lating nutrient values per 100 grams from those values
provided per serving. The dataset contains about 237K
food items, 40 nutrition fact types, and 100K ingredient
types respectively. It exhibits a power law distribution,
c × exp(−0.14x), as some nutrition facts match with
only a small number of foods. Although the majority of
foods in USDA dataset contain important nutrition facts,
some food organizations provide no or partial information
about their products. In addition, the dataset is updated
on a yearly basis[4] and therefore many new foods do not
exist in the dataset. These challenges inspires our work to
develop computational models to automatically estimate
nutrition facts from food descriptions.

Method. We developed multiple regression approaches including least squares Linear Regression (Linear) with L2
regularization (Ridge). In addition, the state-of-the-art approach for learning nutrition facts of foods given their
descriptions was reported in[1]–a Convolutional Neural Network (CNN) which used word n-grams to match food items
with USDA dataset to derive nutrition facts. We extended this approach through joint learning of nutrition facts and
ingredients of given foods. In particular, as Figure 1 depicts, we developed a multi-task learning framework to enable
joint learning of ingredients and nutrition facts given food descriptions. Note that nutrition facts were normalized
scalars and learned separately (see Discussion), and ingredients of each food were represented by a vector of 0/1s
with 1 indicating existence of a specific ingredient in the food. The shared layers were used to exploit commonalities



and differences across tasks for more accurate learning. The network was trained by minimizing the following Mean
Squared Error loss functions:

L(I) = Lnutrition(I) + α× β × Lingredient(I) (1)

where α ∈ [0, 1] controlled the extent to which ingredients contributed in overall learning of the task; α = 0
indicates no contribution and was considered as a baseline here (basic CNN), and the parameter β was used to
establish a common scale for loss magnitudes across tasks[3]. Although, β could be tuned through grid search, we set
β = L0

nutrition/L0
ingredient where L0

. indicates loss at first iteration. Both loss functions optimized minimum squared
error (MSE). Our framework enables learning semantic relations between food items and ingredients, e.g. learning that
“roasted” foods should have “oil” as their ingredients, as well as semantic relations between foods and nutrition facts,
e.g. learning that “rice” generally has high calories. Such relations are important indicators for accurate prediction of
nutrition facts as they capture aspects of nutrients which may not be effectively represented in food descriptions.
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Figure 2: R2 score regression performance;
higher values are better.

Results. Our multi-task learning framework was trained and tested on
each nutrition fact separately. For each nutrition fact, we partitioned
food items into training data (80%), development data (10%) for
parameter tuning, and test data (10%) for evaluation. We used grid
search to optimize α for each nutrition fact using development data,
then the resulting best model for each α was applied to the test data.
Models were compared based on Coefficient of Determination (R2

score ∈ (−∞, 1], where R2 = 1 indicates perfect regression). Our
multi-task learning framework outperformed Linear, Ridge, and basic
CNN regressors on 70%, 55%, and 35% of nutrition fact categories
respectively. In addition, Figure 2 shows the average R2 performance
over all nutrition fact categories for the top two best performing
models, basic CNN and multi-task CNN respectively, across α values.
As the results show, α = 0 led to R2 of 22.40, while there existed
other α values, i.e. α ∈ {.1, .4, .8, .9, 1.0}, that further improved the
performance. We attribute this improvement to our model’s ability in
utilizing semantic relations between food items, and their ingredients
and nutrition facts.

Discussion. In this work, we developed an effective regressor to accurately estimate nutrition facts of foods. Our work
highlighted the importance of learning ingredients for accurate estimation of nutrition facts. Our research has high
value for developing diet monitoring applications, which may generate results with significant public health impact.
Future investigations might explore associations among food quantity and type with ingredients and nutrition facts. In
addition, ingredients often have a hierarchical form, e.g. iodized salt, himalayan salt, and crystal salt can all be mapped
to the ingredient salt, which could be utilized to create a better semantic space for ingredients. In addition, our learning
framework is trained on each nutrition fact separately; joint learning of these facts might create stronger regressors.
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