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Abstract
We employ a characterization of linguistic com-
plexity from psycholinguistic and language ac-
quisition research to develop data-driven cur-
ricula to understand the underlying linguistic
knowledge that models learn to address NLP
tasks. The novelty of our approach is in the de-
velopment of linguistic curricula derived from
data, existing knowledge about linguistic com-
plexity, and model behavior during training. By
analyzing several benchmark NLP datasets, our
curriculum learning approaches identify sets
of linguistic metrics (indices) that inform the
challenges and reasoning required to address
each task. Our work will inform future research
in all NLP areas, allowing linguistic complex-
ity to be considered early in the research and
development process. In addition, our work
prompts an examination of gold standards and
fair evaluation in NLP.

1 Introduction

Linguists devised effective approaches to deter-
mine the linguistic complexity of text data (Wolfe-
Quintero et al., 1998; Bulté and Housen, 2012;
Housen et al., 2019). There is a spectrum of lin-
guistic complexity indices for English, ranging
from lexical diversity (Malvern et al., 2004; Yu,
2010) to word sophistication (O’Dell et al., 2000;
Harley and King, 1989) to higher-level metrics
such as readability, coherence, and information
entropy (van der Sluis and van den Broek, 2010).
These indices have not been fully leveraged in NLP.

We investigate the explicit incorporation of lin-
guistic complexity of text data into the training
process of NLP models, aiming to uncover the
linguistic knowledge that models learn to address
NLP tasks. Figure 1 shows data distribution and
accuracy trend of Roberta-large (Liu et al., 2019)
against the linguistic complexity index “verb vari-
ation” (ratio of distinct verbs). This analysis is
conducted on ANLI (Nie et al., 2020) validation
data, where balanced accuracy scores are computed

0.0 0.5
Verb Variation

0

250

500

Sa
m

pl
e 

Co
un

t

40%

60%

Ac
cu

ra
cy

Figure 1: Data distribution and trend of model accuracy
against the linguistic index verb variation computed on
ANLI (Nie et al., 2020) validation data. Samples with
greater verb variation are more complex and also harder
for the model to classify. Such linguistic indices can
inform difficulty estimation and linguistic curriculum
development for NLP tasks.

for individual bins separately. The accuracy trend
indicates that verb variation can describe the diffi-
culty of ANLI samples to the model. In addition,
the data distribution illustrates potential linguistic
disparity in ANLI; see §3.4

To reveal the linguistic knowledge NLP models
learn during their training, we will employ known
linguistic complexity indices to build multiview lin-
guistic curricula for NLP tasks. A curriculum is a
training paradigm that schedules data samples in a
meaningful order for iterative training, e.g., by start-
ing with easier samples and gradually introducing
more difficult ones (Bengio et al., 2009). Effective
curricula improve learning in humans (Tabibian
et al., 2019; Nishimura, 2018) and machines (Ben-
gio et al., 2009; Kumar et al., 2010; Zhou et al.,
2020; Castells et al., 2020). Curriculum learning
has been found effective in many NLP tasks (Set-
tles and Meeder, 2016; Amiri et al., 2017; Platanios
et al., 2019; Zhang et al., 2019; Amiri, 2019; Xu
et al., 2020; Lalor and Yu, 2020; Jafarpour et al.,
2021; Kreutzer et al., 2021; Agrawal and Carpuat,
2022; Maharana and Bansal, 2022). A multiview
curriculum is a curriculum able to integrate multi-
ple difficulty scores simultaneously and leverage
their collective value (Vakil and Amiri, 2023).



We assume there exists a subset of linguistic
complexity indices that are most influential to learn-
ing an NLP task by a particular model. To identify
these indices for each model and NLP task, we de-
rive a weight factor ρi ∈ [−1, 1] for each linguistic
index that quantifies how well the index estimates
the true difficulty of data samples to the model,
determined by model instantaneous loss against
validation data. By learning these weight factors,
we obtain precise estimations that shed light on the
core linguistic complexity indices that each model
needs at different stages of its training to learn an
NLP task. In addition, these estimates can be read-
ily used for linguistic curriculum development, e.g.,
by training models with linguistically easy samples
(with respect to the model) and gradually introduc-
ing linguistically challenging samples.

To achieve the above goals, we should address
two gaps in the existing literature: First, existing
curricula are often limited to a single criterion of
difficulty and are not applicable to multiview set-
tings. This is while difficulty is a condition that can
be realized from multiple perspectives, can vary
across a continuum for different models, and can
dynamically change as the model improves. Sec-
ond, existing approaches quantify the difficulty of
data based on instantaneous training loss. However,
training loss provides noisy estimates of sample
difficulty due to data memorization (Zhang et al.,
2017; Arpit et al., 2017) in neural models. We will
address both issues as part of this research.

The contributions of this paper are:

• incorporating human-verified linguistic com-
plexity information to establish an effective
scoring function for assessing the difficulty of
text data with respect to NLP models,

• deriving linguistic curricula for NLP models
based on linguistic complexity of data and
model behavior during training, and

• identifying the core sets of linguistic complex-
ity indices that most contribute to learning
NLP tasks by models.

We evaluate our approach on several NLP tasks
that require significant linguistic knowledge and
reasoning to be addressed. Experimental results
show that our approach can uncover latent lin-
guistic knowledge that is most important for ad-
dressing NLP tasks. In addition, our approach
obtains consistent performance gain over compet-
ing models. Source code and data is available at
https://github.com/CLU-UML/Ling-CL.

Algorithm 1 Correlation Method
Require: Dtrain, Dval, Model Θ, Optimizer g, Loss func-

tion f , Curriculum C
1: step← 0
2: ρ← random initialization
3: while step < total_steps do
4: training_batch← SampleBatch(step,Dtrain)
5: loss← ComputeLoss (training_batch, Θ)
6: ling← GetLinguisticFeatures(training_batch)
7: difficulty← CalculateDifficulty(ling, ρ)
8: confidence← DetermineConfidence(step, difficulty)
9: weighted_loss← loss ⊗ confidence

10: Θ← UpdateModel (weighted_loss, Θ)
11: if step % validation_step = 0 then
12: l← ComputeLoss (Dval,Θ)
13: ling← GetLinguisticFeatures(Dval)
14: for ρi ∈ ρ do
15: ρi ← pearsonr(l, ling[:, i])
16: end for
17: end if
18: step← step + 1
19: end while

2 Multiview Linguistic Curricula

We present a framework for multiview curriculum
learning using linguistic complexity indices. Our
framework estimates the importance of various lin-
guistic complexity indices, aggregates the result-
ing importance scores to determine the difficulty of
samples for learning NLP tasks, and develops novel
curricula for training models using complexity in-
dices. The list of all indices used is in Appendix A.

2.1 Linguistic Index Importance Estimation

2.1.1 Correlation Approach
Given linguistic indices {Xj}kj=1 of n data sam-
ples, where k is the number of linguistic indices
and Xj ∈ Rn, we start by standardizing the in-
dices {Zj =

Xj−µj

σj
}kj=1. We consider importance

weight factors for indices {ρj}kj=1, which are ran-
domly initialized at the start of training. At every
validation step, the weights are estimated using
the validation dataset by computing the Pearson’s
correlation coefficient between loss and linguis-
tic indices of the validation samples ρj = r(l,Zj)
where r is the correlation function and l ∈ Rn is the
loss of validation samples. The correlation factors
are updated periodically. It is important to use vali-
dation loss as opposed to training loss because the
instantaneous loss of seen data might be affected
by memorization in neural networks (Zhang et al.,
2017; Arpit et al., 2017; Wang et al., 2020). This is
while unseen data points more accurately represent
the difficulty of samples for a model. Algorithm 1
presents the correlation approach.

https://github.com/CLU-UML/Ling-CL


2.1.2 Optimization Approach
Let Z ∈ Rn×k be the matrix of k linguistic indices
computed for n validation samples and l ∈ Rn

indicate the corresponding loss vector of validation
samples. We find the optimal weights for linguistic
indices to best approximate validation loss:

ρρρ∗ = argmin
ρρρ

∥l− Zρρρ∥22 + λρ∥ρρρ∥1, (1)

where λρ ∈ R and ρρρ∗ ∈ Rk is jointly optimized
over all indices. The index that best correlates with
loss can be obtained as follows:

i∗ = argmin
i

∥l− Z∗iρρρi∥22, (2)

where Z∗i denotes the ith column of Z. Algo-
rithm 2 presents this approach.

We note that the main distinction between the
two correlation and optimization approaches lies
in their scope: the correlation approach operates at
the index level, whereas the optimization approach
uses the entire set of indices.

2.1.3 Scoring Linguistic Complexity
We propose two methods for aggregating linguistic
indices {Xj}k and their corresponding importance
factors {ρj}k into a linguistic complexity score.
The first method selects the linguistic index with
the maximum importance score at each timestep:

Si = Ziĵ , ĵ = argmax
j

ρj , (3)

which provides insights into the specific indices
that determine the complexity to the model.

The second method computes a weighted aver-
age of linguistic indices, which serves as a difficulty
score. This is achieved as follows:

Si =

∑
j ρjZij√∑

j ρ
2
j

, (4)

where Si ∈ R, (µSi , σSi) = (0, 1), is an aggregate
of linguistic complexity indices for the input text.
If an index Zj is negatively correlated with loss,
ρj will be negative, and ρjZj will be positively
correlated with loss. Therefore, Si is an aggregate
complexity that is positively correlated with loss.
And using weighted average results in the indices
that are most highly correlated with loss to have
the highest contribution to Si.

Algorithm 2 Optimization Method
Require: Dtrain, Dval, Model Θ, Optimizer g, Optimizer h,

Loss function f , [Optional] Curriculum C
1: step← 0
2: ρ← random initialization
3: while step < total_steps do
4: training_batch← SampleBatch(step,Dtrain)
5: loss← ComputeLoss (training_batch, Θ)
6: ling← GetLinguisticFeatures(training_batch)
7: difficulty← CalculateDifficulty(ling, ρ)
8: confidence← DetermineConfidence(step, difficulty)
9: weighted_loss← loss ⊗ confidence

10: Θ← UpdateModel (weighted_loss, Θ)
11: if step % validation_step = 0 then
12: l← ComputeLoss (Dval,Θ)
13: ling← GetLinguisticFeatures(Dval)
14: ρ← argminρ ∥ling · ρ− l∥22 + λρ∥ρ∥1
15: end if
16: step← step + 1
17: end while

2.2 Linguistic Curriculum

We evaluate the quality of weighted linguistic in-
dices as a difficulty score and introduce three new
curricula based on a moving logistic (Richards,
1959) and Gaussian functions, see Figure 2.

2.2.1 Time-varying Sigmoid
We develop a time-varying sigmoid function to
produce weights (Eq. 3). The sigmoid function as-
signs a low weight to samples with small difficulty
scores and a high weight to larger difficulty scores.
Weights are used to emphasize or de-emphasize
the loss of different samples. For this purpose, we
use the training progress t ∈ [0, 1] as a shift pa-
rameter, to move the sigmoid function to the left
throughout training, so that samples with a small
difficulty score are assigned a higher weight in the
later stages of training. By the end of the training,
all samples are assigned a weight close to 1. Addi-
tionally, we add a scale parameter β ∈ [1,∞) that
controls the growth rate of weight (upper bounded
by 1) for all samples.

w(Si, t;β) =
1

1 + exp(−Si − t · β)
. (5)

The sigmoid function saturates as the absolute
value of its input increases. To account for this
issue, our input aggregated linguistic index follows
the standard scale, mean of zero, and variance of
one, in (4) and (3).

2.2.2 Moving Negative-sigmoid
The positive-sigmoid function assigns greater
weights to samples with a large value for S that
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(a) Sigmoid
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(b) Negative Sigmoid
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(c) Gaussian

Figure 2: At the beginning of training, the sigmoid function with the lowest opacity is used. It is the right-most curve
in (a), the left-most curve in (b), and the middle curve in (c). Then, as training progresses, the function is shifted
using the parameter t in (5) and (7), causing samples with a higher complexity to be assigned higher confidence
if (a) is used, samples with a lower complexity to be assigned higher confidence if (b) is used, and samples with
medium complexity to be assigned higher confidence if (c) is used.

are linguistically more complex. In order to es-
tablish a curriculum that starts with easy samples
and gradually proceeds to harder ones, we use a
negative sigmoid function:

w(Si, t;β) =
1

1 + exp(Si − t · β)
. (6)

Figure 2 illustrates the process of time-varying
positive and negative sigmoid functions. Over the
course of training, larger intervals of linguistic com-
plexity are assigned full confidence, until the end of
training when almost all samples have a confidence
of one and are fully used in training.

2.2.3 Time-varying Gaussian Function

We hypothesize that training samples that are not
too hard and not too easy are the most useful in
training, and should receive the most focus. In fact,
samples that are too easy or hard may contain arti-
facts that are harmful to training, may contain noise,
and may not be generalizable to the target task.
Therefore, we use the Gaussian function to prior-
itize learning from medium-level samples. The
function starts with a variance of 1, and scales up
during the course of training so that the easier and
harder samples, having lower and higher linguis-
tic complexity values, respectively, are assigned
increasing weights and are learned by the end of
training. We propose the following function:

w(Si, t; γ) = exp(
−S2

i

2(1 + t · γ)
), (7)

where γ is the rate of growth of variance and t is
the training progress, see Figure 2.

2.2.4 Weighting-based Curriculum
We define a curriculum by weighting sample losses
according to their confidence. Samples that are
most useful for training receive higher weights, and
those that are redundant or noisy receive smaller
weights. Weighting the losses effectively causes
the gradient update direction to be dominated by
the samples that the curriculum thinks are most
useful. Weights w are computed using either Equa-
tion 5, 6 or 7:

L =
1∑

iw(Si, t;β)

∑
i

w(Si, t;β) · ℓi, (8)

where ℓi is the loss of sample i, t the current train-
ing progress, and L is the average weighted loss.

2.3 Reducing Redundancy in Indices
We have curated a list of 241 linguistic complex-
ity indices. In the case of a text pair input (e.g.
NLI), we concatenate the indices of the two text
inputs, for a total of 482. Our initial data analysis
reveals significant correlation among these indices
in their estimation of linguistic complexity. To op-
timize computation, avoid redundancy, and ensure
no single correlated index skews the complexity ag-
gregation approach 2.1.3, we propose two methods
to select a diverse and distinct set of indices for our
study. We consider the choice of using full indices
or filtering them as a hyper-parameter.

In the first approach, for each linguistic index,
we split the dataset into m partitions based on the
index values 1 (similar to Figure 1). Next, using a
trained No-CL (§3.3) model, we compute the accu-
racy for each partition. Then, we find the first-order

1We use numpy.histogram_bin_edges.



(a) Pair-wise correlation between indices

(b) Clustered correlation matrix.

Figure 3: Eliminating redundancy in linguistic indices.
(a) shows the Pearson’s correlation coefficient between
each pair of linguistic indices. (b) is created by re-
ordering the rows and columns of (a), such that mutually
correlated indices are clustered into blocks using hier-
archical clustering (Kumar et al., 2000). Best seen in
color; lighter areas indicate greater correlations among
index pairs or groups.

accuracy trend across these partitions. Linguistic
indices with a pronounced slope describe great vari-
ance in the data and are considered for our study;
we select the top 30% of indices, reducing their
count from 482 to 144 for text pair inputs.

In the second approach, we compute pair-wise
correlations between all indices. Then, we group
highly correlated indices, as shown in Figure 3.
From each cluster, we select a representative index,
aiming to prevent correlated indices from domi-
nating the aggregation approach and to eliminate
redundancy. This method narrows our focus to
the following 16 key indices: 1) type-token ratio
(TTR), 2) semantic richness, 3) ratio of verbs to
tokens, 4) mean TTR of all k word segments, 5) To-
tal number of verbs, 6) number of unique words, 7)
adverbs per sentence, 8) number of unique words
in the first k tokens, 9) ratio of nouns to verbs,
10) semantic noise, 11) lexical sophistication, 12)
verb sophistication, 13) clauses per sentence, 14)
average SubtlexUS CDlow value per token, 15) ad-
jective variation, 16) ratio of unique verbs. Please
refer to Appendix A for definitions and references
to indices.

3 Experiments

3.1 Datasets
We evaluate NLP models in learning the tasks of
the following datasets:

• SNLI: Stanford Natural Language Infer-
ence (Bowman et al., 2015). The task is to
classify a pair of sentences by the relation be-
tween them as one of entailment, neutral, or
contradiction.

• CoLA: Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2019). It is a task of
classifying sentences as grammatical vs. un-
grammatical.

• ANLI: Adverserial Natural Language Infer-
ence (Nie et al., 2020). This NLI dataset
was created with a model in the loop, by only
adding samples to the dataset that fool the
model. We train only on the ANLI training
set of 162k samples.

• SST-2: Stanford Sentiment Treebank (Socher
et al., 2013). The task is to predict the senti-
ment of a given sentence as positive or nega-
tive.

• RTE: Recognizing Textual Entailment (Wang
et al., 2018). The task is to determine if a
given sentence is entailed by another given
sentence.

• AN-Pairs: Adjective-noun pairs from the Cam-
bridge ESOL First Certificate in English
(FCE) exams (Kochmar and Briscoe, 2014).
The task is to detect if an adjective-noun pair,
including pairs that are typically confusing
to language learners, is used correctly in the
context of a sentence.

• GED: Grammatical Error Detection (Yan-
nakoudakis et al., 2011). The task is to iden-
tify grammar errors at word level in given
sentences.

3.2 Difficulty Scoring Functions
The curriculum learning approaches in §2.2 use
difficulty scores or compute confidence to quantify
sample difficulty in order to rank sentences. We use
as difficulty scores: aggregate linguistic complexity
Ling, see Section 2.1.3, and Loss (Xu et al., 2020;
Wu et al., 2021; Zhou et al., 2020). We take the
loss from a proxy model (No-CL in §3.3) by record-
ing all samples losses two times per epoch during
training and computing the sample-wise average.



3.3 Baselines

We consider a no-curriculum baseline as well as
several recent curriculum learning approaches.

• No-CL: no-curriculum uses standard random
mini-batch sampling from the whole dataset
without sample weighting.

• Sampling (Bengio et al., 2009) uses the easiest
subset of the dataset at each stage of training.
Instead of randomly sampling a mini-batch
from the whole dataset, a custom data sam-
pler is created that provides the subset consist-
ing of the easiest α% of data when training
progress is at α%.

• SL-CL & WR-CL (Platanios et al., 2019) is a
curriculum learning approach that defines a
time-varying function of the model’s compe-
tence (defined as the fraction of training data
that the model uses at every step), and a dif-
ficulty score of the data. At each iteration,
a minibatch is sampled from the subset of
data with difficulty smaller than the model’s
competence—a pre-defined non-linear func-
tion. The model employs sentence length (SL-
CL) and word rarity (WR-CL) as difficulty
measures. Sampling is the same as Compe-
tence-based curriculum learning with a linear
competence function.

• SuperLoss (Castells et al., 2020) uses instan-
taneous loss to compute task-agnostic sam-
ple confidence. It emphasizes easy samples
and de-emphasizes hard samples based on the
global average loss as the difficulty threshold.

• Concat (Lee et al., 2021) concatenates linguistic
indices to language embeddings before clas-
sification. Lee et al. (2021) and Meng et al.
(2020) reported low performance as a result of
appending features to embeddings. However,
our approach succeeds in utilizing concate-
nated features.

• Data Selection (Mohiuddin et al., 2022) is an
online curriculum learning approach. It evalu-
ates the training data at every epoch and uses
loss as the difficulty score. It selects the mid-
dle 40% of samples according to difficulty.

We compare the above models against our ap-
proaches, Ling-CL, which aggregates linguistic
indices using weighted average or max-index aggre-
gation, and applies different curriculum strategies:

sigmoid, negative-sigmoid, and Gaussian weight-
ing, as well as sampling an competence-based ap-
proaches, see§3.3. We test variants of our approach
with the correlation method, optimization method,
and indices filtering. We report results of the max
aggregation (§2.1.3) approach as it performs better
than the weighted average and is computationally
cheaper. Loss-CL computes loss as a difficulty
score by recording the losses of samples during
training of No-CL. The loss during the early stages
of training generated by an under-trained model is
a good measure of the relative difficulty of both
training and validation samples.

3.4 Evaluation Metrics

Linguistic disparity can be quantified by the extent
of asymmetry in the probability distribution of the
linguistic complexity of samples in a dataset, e.g.,
see Figure 1 in §1. A natural solution to evaluate
models is to group samples based on their linguis-
tic complexity. Such grouping is crucial because
if easy samples are overrepresented in a dataset,
then models can result in unrealistically high per-
formance on that dataset. Therefore, we propose
to partition datasets based on a difficulty metric
(linguistic index or loss) and compute balanced ac-
curacy of different models on the resulting groups.
This evaluation approach reveals great weaknesses
in models, and benchmark datasets or tasks that
seemed almost “solved” such as as the complex
tasks of NLI.

3.5 Experimental Settings

We use the transformer model roberta-base (Liu
et al., 2019) from (Wolf et al., 2020), and run
each experiment with at least two random seeds
and report the average performance. We use
AdamW (Loshchilov and Hutter, 2018) optimizer
with a learning rate of 1× 10−5, batch size of 16,
and weight decay of 1× 10−2 for all models. The
model checkpoint with the best validation accuracy
is used for final evaluation. In NLI tasks with a pair
of text inputs, the indices of both texts are used. For
Ling-CL, we optimize the choice of index impor-
tance estimation method and aggregation method.
For the baselines, we optimize the parameters of
SuperLoss (λ and moving average method), and
the two parameters of SL-CL and WR-CL mod-
els for each dataset. For the data selection, we
use a warm-up period of 20% of the total training
iterations.



ANLI COLA RTE SNLI SST2 AN-Pairs GED Average
Ling-CL [NegSig] 59.3 ± 2.55 72.4 ± 0.40 79.1 ± 8.47 82.8 ± 8.35 92.2 ± 0.22 79.1 ± 1.55 75.3 ± 0.67 77.2 ± 3.17

Ling-CL [Gauss] 60.9 ± 1.41 73.0 ± 0.02 77.2 ± 8.08 83.5 ± 8.39 92.4 ± 0.27 82.9 ± 1.24 75.5 ± 0.41 77.9 ± 2.83

Ling-CL [Sig] 58.1 ± 0.17 64.6 ± 8.91 78.7 ± 8.87 83.0 ± 8.48 92.3 ± 0.01 82.3 ± 0.93 75.9 ± 0.10 76.4 ± 3.92

Loss-CL [NegSig] 59.0 ± 0.31 55.6 ± 0.64 68.1 ± 1.59 75.1 ± 0.05 91.6 ± 0.26 76.4 ± 5.70 75.1 ± 1.44 71.6 ± 1.43

Loss-CL [Sig] 49.7 ± 9.58 56.6 ± 0.37 66.8 ± 0.29 83.6 ± 8.37 90.9 ± 0.42 81.4 ± 0.61 73.3 ± 0.29 71.8 ± 2.85

Loss-CL [Gauss] 49.4 ± 11.07 57.0 ± 1.29 67.2 ± 1.41 75.1 ± 0.52 91.8 ± 0.12 80.5 ± 2.08 74.5 ± 0.07 70.8 ± 2.37

Sampling 49.9 ± 10.00 64.6 ± 8.89 67.9 ± 0.03 83.2 ± 8.72 91.5 ± 0.07 82.6 ± 3.93 73.8 ± 1.23 73.4 ± 4.7

Competence 50.1 ± 11.27 63.4 ± 9.08 68.8 ± 0.64 74.7 ± 0.06 91.6 ± 0.03 84.0 ± 1.14 74.1 ± 0.39 72.4 ± 3.23

SL-CL 50.3 ± 10.05 55.8 ± 0.06 67.7 ± 1.27 82.6 ± 8.35 93.1 ± 0.00 81.6 ± 0.72 75.2 ± 0.26 72.3 ± 2.96

WR-CL 50.9 ± 9.80 56.1 ± 0.53 68.4 ± 0.73 74.5 ± 0.16 91.5 ± 0.16 80.1 ± 0.81 75.2 ± 0.17 71.0 ± 1.77

SuperLoss 39.5 ± 0.14 56.9 ± 0.69 69.6 ± 0.50 75.2 ± 0.14 91.7 ± 0.26 77.8 ± 1.89 74.2 ± 0.15 69.3 ± 0.54

Concat 51.3 ± 9.83 64.3 ± 8.03 71.4 ± 0.51 75.2 ± 0.24 91.9 ± 0.14 81.8 ± 1.66 73.8 ± 0.91 72.8 ± 3.05

Data Selection 46.8 ± 6.12 55.1 ± 1.71 66.6 ± 1.49 74.4 ± 0.49 91.5 ± 0.30 79.6 ± 1.03 75.5 ± 0.52 69.9 ± 1.67

No-CL 51.7 ± 8.21 57.0 ± 0.22 70.0 ± 0.45 83.3 ± 8.42 83.7 ± 8.22 82.1 ± 0.51 74.0 ± 0.14 71.7 ± 3.74

Table 1: Balanced accuracy by linguistic index (Word rarity). Accuracy is the metric for all datasets except CoLA
and GED, CoLA uses Matthew’s correlation and GED uses Fβ=0.5 score. Ling-CL uses aggregate linguistic
complexity as a difficulty score we create, and Loss-CL uses the average loss of a sample throughout a full training.

3.6 Enhanced Linguistic Performance

Tables 1 show the performance of different models
when test samples are grouped based on word rar-
ity. The results show that the performance of the
baseline models severely drops compared to stan-
dard training (No-CL). This is while our Ling-CL
approach results in 4.5 absolute points improve-
ment in accuracy over the best-performing baseline
averaged across tasks, owing to its effective use
of linguistic indices. Appendix D shows the over-
all results on the entire test sets, and results when
test samples are grouped based on their loss; we
use loss because it is a widely-used measure of
difficulty in curriculum learning. These groupings
allow for a detailed examination of the model’s per-
formance across samples with varying difficulty,
providing insights into the strengths and weak-
nesses of models. For example, the performance
on SNLI varies from 89.8 to 90.6. However, when
word rarity is used to group data based on diffi-
culty, the performance range significantly drops
from 74.4 to 83.6, indicating the importance of the
proposed measure of evaluation. We observe that
such grouping does not considerably change the
performance on ANLI, which indicates the high
quality of the dataset. In addition, it increases
model performance on AN-Pair and GED, which
indicates a greater prevalence of harder examples
in these datasets.

On average, the optimization approach outper-
forms correlation by 1.6% ±1.9% accuracy in our
experiments. Also notably, on average, the argmax
index aggregation outperforms the weighted aver-
age by 1.9% ±1.9%, and the filtered indices out-
perform the full list of indices by 1.4% ±1.1%.

3.7 Learning Dynamics for NLP Tasks
Identification of Key Linguistic Indices We an-
alyze the linguistic indices that most contribute
to learning NLP tasks. For this purpose, we use
the evaluation approach described in §3.4 for com-
puting balanced accuracy according to linguistic
indices. Table 2 shows the top three important
linguistic indices for each dataset as identified by
our optimization algorithm using the Gaussian cur-
riculum. Importance is measured by the average ρ
value. Early, middle, and late divide the training
progress into three equal thirds. The top index in
the early stage is the index with the highest average
ρ during the first 33.3% of training. The top indices
are those that most accurately estimate the true dif-
ficulty of samples, as they should highly correlate
with validation loss.

Table 2 shows that different indices are impor-
tant for different tasks. This means that it is not
possible to use a single set of linguistic indices as a
general text difficulty score, important indices can
be identified for each task, which can be achieved
by our index importance estimation approach (§2.1)
and evaluation metric (§3.4).

Analysis of Linguistic Indices for Grammar
Tasks We consider the grammar tasks for anal-
ysis. For AN-Pairs (adjective-noun pair), during
the early stage, the top indices are the number of
tokens per sentence, age of acquisition (AoA) of
words, and mean length of sentences. This is mean-
ingful because longer sentences might introduce
modifiers or sub-clauses that can create ambiguity
or make it more challenging to discern the intended
adjective-noun relationship accurately. Regarding
AoA, words that are acquired later in life or belong



Early Middle Late

AN-Pairs
# Tokens per sentence Lemmas age of acquisition # Adverbs per sentence
Lemmas age of acquisition # Tokens per sentence Corrected TTR
Mean sentence length # Adverbs per sentence Nouns to adjective ratio

GED
Corrected noun variation

# Tokens per sentence # Nouns per sentence # Tokens per sentence
# Nouns per sentence # Tokens per sentence # Nouns per sentence

RTE
Ratio of Adverbs to Verbs (P)

Ratio of Subordinating Conjunctions to Verbs (P) Adverb Variation (P)
Verb sophistication (P) Adverbs per sentence (P)

ANLI
Lexical verb variation (P) Function words per sentence (H)

Unique Entities (P) Log Tokens per log sentences
Unique Entities per token (P)

SST-2
# Complex nominals

Noun variation
Ratio of nouns to verbs Verb variation

CoLA
# Function words # Coordinating Conjunctions

Number of T-units
T-units per sentence

SNLI
Lemmas age of acquisition (P)

Linsear Write Formula Score (P)
Gunning Fog Count Score (P)

Table 2: Top three important linguistic indices at each stage of learning. For datasets with a premise (P) and
hypothesis (H), they are indicated in parentheses.

0 20 40
Training Iterations

0.02

0.02

0.02

0.02

|
|

Balanced accuracy

65.0

65.2

65.5

65.8

66.0

Ba
la

nc
ed

 A
cc

ur
ac

y

(a) # Unique words

0 20 40
Training Iterations

0.02

0.02

0.03

|
|

Balanced accuracy

68.0

68.5

69.0

69.5
Ba

la
nc

ed
 A

cc
ur

ac
y

(b) # Unique sophisticated words

0 20 40
Training Iterations

0.01

0.01

0.01

0.01

|
|

Balanced accuracy

63.8

64.0

64.2

64.5

64.8

Ba
la

nc
ed

 A
cc

ur
ac

y

(c) # Verb sophistication

Figure 4: The progression of the estimated importance factors ρ, and balanced accuracy for groups of linguistic
indices.

to more specialized domains might pose challenges
in accurately judging the correct usage of adjective-
noun pairs because of their varying degrees of fa-
miliarity and potential difficulty associated with
specific vocabulary choices.

During the middle stage the AoA increases in
importance and remains challenging to the model,
the number of adverbs per sentence increases in
rank and joins the top three indices. In the context
of adjective-noun pairs, the presence of multiple ad-
verbs in a sentence can potentially affect the inter-
pretation and intensity of the adjective’s meaning.
This is because adverbs often modify verbs, adjec-
tives, or other adverbs in sentences. In addition,
depending on the specific adverbs used, they may
enhance, weaken, or alter the intended relationship
between the adjective and the noun. Moreover, the
presence of several adverbs can simply introduce
potential challenges in identifying and correctly in-
terpreting the relationship between adjectives and

nouns due to increasing syntactic complexity.

In the third stage, the number of adverbs per
sentence becomes the top important index, while
AoA and the number of tokens per sentence drop
out of the top three. In the early stage, AoA and the
number of tokens has ρ values of 0.168 and 0.164,
respectively. In the late stage, they drop to 0.11 and
0.13, while the number of adverbs per sentence is
0.138 early, and increases to 0.181 in the late stage.
We see that indices may become dominant not only
by increasing their ρ value but also by waiting for
other indices to drop down when they have been
learned by the model. Therefore, Ling-CL can
determine the order to learn linguistic indices, and
then learn them sequentially.

Regarding GED, noun variation is the dominant
index throughout the training process. Such varia-
tion is important because it affects syntactic agree-
ment, subject-verb agreement, modifier placement,
and determiner selection. These factors affect gram-



matical consistency and coherence within the sen-
tence structure, leading to the importance of noun
variation throughout the training process.

Dominant Indices for CoLA Task Regarding
CoLA, the number of function words and coordinat-
ing conjunctions indices are the dominant indices
at the early stage, and middle and late stages of
training respectively. These words are crucial in
establishing the syntactic structure of a sentence.
They directly contribute to agreement and refer-
ences, coherence, and adherence to grammar rules.
We note that T-units (independent/main clauses
clauses with their associated subordinate clauses)
are higher-order linguistic constituents that pro-
vide information about the dependency relations
between sub-constituents, and the overall coher-
ence of sentences. Indices related to T-units are
among the top three crucial indices.

Trends and Relationships between ρ and Bal-
anced Accuracy We use the GED dataset (§3.1)
to analyze the trends of ρ throughout training, and
the relation between ρ and balanced accuracy. Fig-
ure 4 shows the progression of ρ with the progres-
sion of balanced accuracy for selected linguistic
indices. This figure is produced using No-CL. We
observe across several indices that ρ is high when
balanced accuracy is low, indicating that the index
is challenging to the model and therefore used for
learning with a high ρ, and decreases as the in-
dex is learned. However, Figure 4a shows that it
is not necessary that when balanced accuracy in-
creases ρ would decrease. In this case, it means
that the model is performing relatively well on the
index, but the index remains predictive of loss. So,
although the average performance increased, the
variation in performance among different values of
the index remains high. We find that numerous in-
dices follow the same of trend of ρ. In Appendix B,
we propose a method for clustering ρ to effectively
uncover patterns and similarities in the learning of
different indices. However, further analysis of the
dynamics of ρ is the subject of our future work.

In addition, we find that the rank of top indices
is almost constant throughout the training. This
quality may be useful in creating an approach that
gathers the indices rankings early on and utilizes
them for training. Appendix E lists influential in-
dices by their change in ρ across stages of training.
We note that the “number of input sentences” index
is the least important metric because the index is al-

most constant across samples—75% of the samples
consist of a single sentence in the datasets.

4 Conclusion and Future Work

We propose a new approach to linguistic curricu-
lum learning. Our approach estimates the im-
portance of multiple linguistic indices and aggre-
gates them, provides effective difficulty estimates
through correlation and optimization methods, and
introduces novel curricula for using difficulty esti-
mates, to uncover the underlying linguistic knowl-
edge that NLP models learn during training. Fur-
thermore, we present a method for a more accurate
and fair evaluation of computational models for
NLP tasks according to linguistic indices. Further-
more, the estimated importance factors present in-
sights about each dataset and NLP task, the linguis-
tic challenges contained within each task, and the
factors that most contribute to model performance
on the task. Further analysis of such learning dy-
namics for each NLP task will shed light on the
linguistic capabilities of computational models at
different stages of their training.

Our framework and the corresponding tools
serve as a guide for assessing linguistic complex-
ity for various NLP tasks and uncover the learn-
ing dynamics of the corresponding NLP models
during training. While we conducted our analysis
on seven tasks and extracted insights on the key
indices for each task, NLP researchers have the
flexibility to either build on our results or apply
our approach to other NLP tasks to extract rele-
vant insights. Promising areas for future work in-
clude investigations on deriving optimal linguistic
curriculum tailored for each NLP task; examining
and enhancing linguistic capabilities of different
computational models, particularly with respect
to linguistically complex inputs; and developing
challenge datasets that carry a fair distribution of
linguistically complex examples for various NLP
tasks. In addition, future work could study why spe-
cific indices are important, how they connect to the
linguistic challenges of each task, and how differ-
ent linguistic indices jointly contribute to learning
a target task. We expect other aggregation func-
tions, such as log-average, exponential-average,
and probabilistic selection of maximum, to be ef-
fective approaches for difficulty estimation based
on validation loss. Finally, other variations of the
proposed Gaussian curriculum could be investi-
gated for model improvement.



5 Limitations

Our work requires the availability of linguistic in-
dices, which in turn requires expert knowledge.
Such availability requirements may not be fulfilled
in many languages. Nevertheless, some linguis-
tic complexity indices are language independent,
such as the commonly-used “word rarity” measure,
which facilitates extending our approach to other
languages. Moreover, our approach relies on the
effectiveness of specific linguistic complexity in-
dices for target tasks and datasets employed for
evaluation; different linguistic complexity indices
may not capture all aspects of linguistic complex-
ity and may yield different results for the same
task or dataset. In addition, the incorporation of
linguistic complexity indices and the generation
of data-driven curricula can introduce additional
computational overhead during the training process.
Finally, our approach does not provide insights into
the the interactions between linguistic indices dur-
ing training.
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A List of indices

# Unique words # Unique sophisticated words
# Unique lexical words # Unique sophisticated lexical words
# Total words # Total sophisticated words
# Total lexical words # Total sophisticated lexical words
Lexical density Lexical sophistication (total)
Lexical sophistication (unique) Verb sophistication
Verb sophistication (squared numerator) Verb sophistication (sqrt denominator)
Type-token ratio (TTR) Mean TTR of all k word segments
Corrected TTR (sqrt(2N) denominator) Root TTR (sqrt(N) denominator)
Log TTR Uber index
Noun variation Adjective variation
Adverb variation (Ajd + Adv) variation
D Measure Ratio of unique verbs
Verb variation with squared numerator Verb variation with (sqrt(2N)) denominator
Verb variation over all lexical words Unique words in first k tokens
Unique words in random k tokens Unique words in random sequence of k tokens

Table 3: Lexical indices

# Words # Sentences
# Verb phrases # Clauses
# T-units # Dependent clauses
# Complex T-units # Coordinate phrases
# Complex nominals Mean length of sentence
Mean length of T-unit Mean unit of clause
Clauses per sentence Verb phrases per T-unit
Clauses per T-unit Dependent clause ratio
Dependent clause per T-unit T-units per sentence
Complex T-unit ratio Coordinate phrases per T-unit
Coordinate phrases per clause Complex nominals per T-unit
Complex nominals per clause

Table 4: Syntactic indices

In our work we make use indices from Lu (2010), Lu (2012), and Lee et al. (2021). Table 3 lists the
lexical indices (33 indices) and table 4 lists the syntactic indices (23 indices) that we use. For their full
descriptions please refer to Lu (2010) and Lu (2012). In this section, we provide descriptions of a few
relevant indices. Please refer to Lee et al. (2021) for the comprehensive list of lingfeat (185 indices)
indices.

TTR is the ratio of unique words in the text. D-measure is a modification to TTR that is not biased
by sample size. Lexical words are nouns, verbs, adjectives, and adverbs. Sophisticated words are the
unconventional words. We consider words beyond the 2000 most frequent words in the American National
Corpus as sophisticated. Uber index is a transformation of TTR. SubtlexUS CDlow is a word frequency
measure, specifically, “document frequency“ of words starting with a lower case letter.



B Clustering ρ
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(a) Pair-wise differences between ρ
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(b) Clustered differences map.

Figure 5: Figure (a) shows mean absolute difference between ρ of each pair of linguistic indices, averaged over the
whole training. Figure (b) is created by re-ordering the rows and columns of (a), such that groups of indices have
minimal difference between them.
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(c) SST-2 ρ
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(d) CoLA Balanced Accuracy
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(e) SNLI Balanced Accuracy
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(f) SST-2 Balanced Accuracy

Figure 6: The progression of the estimated importance factors ρ, and balanced accuracy for groups of linguistic
indices. Each pair of figures (a) and (d), (b) and (e), (c) and (f) share the legend. The solid line is the mean value of
the group of lines, and the shaded area is the 95% confidence interval.

We observe that several indices follow the same patterns. Therefore, we devise a method to group
indices that follow the same pattern of ρ. We compute the mean absolute difference between ρ of each
pair of linguistic indices. Then, we cluster the groups of indices that all have a minimum distance
between them. Appendix B displays the effect of clustering. Note that the common trends among lines in
Figures 6a, 6b, and 6c are because they are all governed by the trend of the validation loss (using both
optimization and correlation approaches). Figures 6d, 6e, and 6f show the trend of balanced accuracy for
the same groups. The grouped balanced accuracy has a very high variance. It shows that indices with
similar ρ do not have similar values of balanced accuracy. Moreover, it shows that indices with the highest
ρ do not necessarily have the highest mean balanced accuracy. Furthermore, indices that have ρ = 0
perform comparably to other indices, indicating that the model performs well according to such linguistic



indices, despite them not being correlated with loss.
Figure 5 illustrates the process of clustering together linguistic indices based on their matching ρ

curves. We cluster the indices using hierarchical clustering with complete linkage using the flat clustering
method23.

C Linguistic Complexity Indices

We consider linguistic complexity in terms of variability and sophistication in productive vocabulary
and grammatical structures in textual content. We employ a characterization of such complexity based
on existing findings in language acquisition research (Wolfe-Quintero et al., 1998; Lu, 2010, 2012).
Specifically, we obtain 56 complexity measures from Lu (2010) and Lu (2012), including lexical and
syntactic measures. Additionally, we use 185 linguistic features from the lingfeat library (Lee et al.,
2021), including semantic, lexical, syntactic, discourse, and traditional features. In total, we use 241
indices. For inputs that consist of a pair of sentences, we concatenate the indices for a total of 482 indices.

C.1 Lexical Complexity

In terms of lexical complexity, we consider three dimensions: lexical density, sophistication, and variation
described below:

Lexical density: is quantified by the ratio of the number of open-class words to the total number of
words in a given text. Texts with higher lexical density are expected to be more complex as they contain
larger amounts of information-carrying words.

Lexical sophistication: measures the proportion of sophisticated—relatively unusual or advanced—
words in the input text (O’Dell et al., 2000), e.g., words not in the top K (K= 5000) frequent words in
the target dataset or language. Example indices include the ratio of the number of sophisticated lexical
words (Linnarud, 1986; Hyltenstam, 1988), sophisticated word types (Wolfe-Quintero et al., 1998) and
sophisticated verb types (Harley and King, 1989) in texts, which include several variations as reported
in Appendix A, Table 3. We use the top K most frequent words of each dataset and consider different
inflections of the same lemma as one type for computing lexical sophistication.

Lexical Variation: refers to the diversity of vocabulary in a given text. Examples of such variations
include type-token ratio (Templin, 1957) which is the ratio of the number of word types to the number of
words in the text and several different variations of this metric (Malvern et al., 2004; McKee et al., 2000;
McClure, 1991) including D-measure (Malvern et al., 2004), which determines lexical variation of an
input text by finding the curve that best matches the actual curve of type-token ratio against tokens of the
input.

C.2 Syntactic Complexity

Syntactic complexity determines variability and sophistication with respect to grammatical structures.
Simple sentences such as “the mouse ate the cheese” can be converted to their linguistically-complex
counterparts, e.g., “the mouse the cat the dog bit chased ate the cheese,” which are still well-formed
sentences but force readers to suspend their partial understanding of the entire sentence by encountering
subordinate clauses that substantially increase the cognitive load of the sentences. We employ syntactic
complexity measures that quantify the length of production units at the clausal, sentential, or T-unit
levels; indices that reflect the amount of subordination, e.g., T-unit complexity ratio (clauses per T-unit) or
dependent clause ratio (dependent clauses per clause); indices that quantify the amount of coordination,
e.g., number of coordinate phrases per clause, T-unit or complex T-unit; as well as those that quantify
the range of surface and particular syntactic and morphological structures (e.g., frequency and variety
of tensed forms or extent of affixation) (Wolfe-Quintero et al., 1998; Ortega, 2003). See Appendix A,
Table 3.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html


D Full results

Tables 5 and 6 show the overall performance and performance balanced by loss. Our Ling-CL approach
results in 1.3 absolute points improvement in accuracy over the best-performing baseline averaged across
tasks, balanced by loss.

ANLI COLA RTE SNLI SST2 AN-Pairs GED Average
Ling-CL [NegSig] 49.6 ± 0.44 62.8 ± 0.19 81.0 ± 0.10 90.0 ± 0.10 95.0 ± 0.06 74.0 ± 1.04 71.6 ± 0.37 74.9 ± 0.33

Ling-CL [Gauss] 51.5 ± 0.39 64.5 ± 0.35 79.8 ± 0.21 90.4 ± 0.01 95.2 ± 0.00 75.0 ± 2.08 71.9 ± 0.20 75.5 ± 0.46

Ling-CL [Sig] 51.6 ± 0.17 65.1 ± 0.71 81.9 ± 0.21 90.2 ± 0.07 95.1 ± 0.11 74.5 ± 2.60 71.8 ± 0.05 75.7 ± 0.56

Loss-CL [NegSig] 52.7 ± 0.03 63.5 ± 0.66 80.5 ± 0.36 90.5 ± 0.12 95.0 ± 0.00 69.3 ± 1.54 72.2 ± 0.03 74.8 ± 0.39

Loss-CL [Gauss] 51.9 ± 0.06 65.7 ± 1.66 82.3 ± 1.08 90.3 ± 0.38 94.7 ± 0.11 72.9 ± 1.04 72.1 ± 0.08 75.7 ± 0.63

Loss-CL [Sig] 51.1 ± 1.20 65.0 ± 0.57 78.9 ± 1.26 90.4 ± 0.26 94.9 ± 0.06 74.3 ± 1.93 71.7 ± 0.15 75.2 ± 0.78

Sampling 49.3 ± 0.33 64.0 ± 1.02 78.4 ± 0.70 90.3 ± 0.14 94.6 ± 0.10 72.9 ± 4.17 71.1 ± 0.07 74.4 ± 0.93

Competence 50.7 ± 0.03 63.2 ± 0.63 77.8 ± 0.73 90.3 ± 0.17 95.0 ± 0.11 74.5 ± 0.52 71.2 ± 0.10 74.7 ± 0.33

SL-CL 51.1 ± 0.95 63.6 ± 0.42 80.3 ± 2.35 90.1 ± 0.11 94.9 ± 0.06 69.3 ± 1.56 71.9 ± 0.12 74.5 ± 0.80

WR-CL 51.9 ± 0.16 64.5 ± 1.00 80.0 ± 0.54 90.2 ± 0.18 94.4 ± 0.23 64.6 ± 4.17 71.7 ± 0.32 73.9 ± 0.94

Concat 52.2 ± 0.30 65.2 ± 0.33 81.8 ± 0.90 90.6 ± 0.00 94.6 ± 0.11 72.4 ± 2.60 71.7 ± 0.21 75.5 ± 0.64

SuperLoss 51.7 ± 0.21 64.3 ± 0.99 80.5 ± 1.04 90.5 ± 0.15 94.8 ± 0.13 67.7 ± 2.08 71.7 ± 0.10 74.5 ± 0.67

Data Selection 48.5 ± 0.94 59.4 ± 0.03 79.2 ± 0.90 89.8 ± 0.12 94.2 ± 0.17 72.4 ± 1.56 71.1 ± 0.13 73.5 ± 0.55

No-CL 51.4 ± 0.06 64.1 ± 0.42 81.4 ± 0.77 90.4 ± 0.17 94.9 ± 0.10 71.9 ± 2.08 72.0 ± 0.40 75.2 ± 0.57

Table 5: Overall performance of each approach. Unlike Tables 1 and 6, this table presents the standard un-balanced
accuracy.

ANLI COLA RTE SNLI SST2 AN-Pairs GED Average
Ling-CL [NegSig] 23.2 ± 4.61 27.1 ± 0.66 45.4 ± 6.23 26.3 ± 0.44 25.7 ± 1.31 36.7 ± 4.98 73.9 ± 0.83 36.9 ± 2.72

Ling-CL [Gauss] 21.0 ± 1.89 26.7 ± 1.62 37.1 ± 0.52 42.9 ± 0.12 22.7 ± 2.91 34.7 ± 6.92 73.9 ± 0.36 37.0 ± 2.05

Ling-CL [Sig] 22.2 ± 0.51 26.4 ± 0.14 38.5 ± 0.27 35.2 ± 8.99 25.0 ± 0.58 38.4 ± 3.26 74.6 ± 0.11 37.2 ± 1.98

Loss-CL [NegSig] 20.9 ± 1.59 26.7 ± 0.42 37.7 ± 1.03 33.8 ± 8.37 23.8 ± 3.13 29.8 ± 3.76 73.4 ± 0.84 35.2 ± 2.73

Loss-CL [Sig] 19.5 ± 0.21 27.6 ± 0.51 36.3 ± 2.43 34.6 ± 7.58 24.2 ± 3.59 31.6 ± 1.95 72.6 ± 0.01 35.2 ± 2.33

Loss-CL [Gauss] 20.6 ± 0.99 26.3 ± 1.29 40.8 ± 3.89 26.2 ± 0.18 23.1 ± 1.63 31.7 ± 3.46 73.0 ± 0.38 34.5 ± 1.69

Sampling 19.0 ± 0.12 26.2 ± 0.36 32.9 ± 0.75 42.8 ± 0.50 24.1 ± 3.57 33.6 ± 1.09 72.8 ± 1.44 35.9 ± 1.12

Competence 21.5 ± 0.55 26.8 ± 1.84 36.9 ± 2.57 27.0 ± 0.34 27.1 ± 0.63 35.5 ± 2.01 73.4 ± 1.06 35.5 ± 1.29

SL-CL 21.3 ± 0.28 26.2 ± 0.00 31.6 ± 0.58 34.6 ± 8.35 26.7 ± 0.00 32.3 ± 2.59 74.8 ± 0.77 35.4 ± 1.8

WR-CL 19.3 ± 0.52 26.4 ± 0.69 35.7 ± 0.51 26.1 ± 0.03 24.2 ± 1.26 29.0 ± 0.73 73.5 ± 0.61 33.5 ± 0.62

SuperLoss 20.7 ± 1.77 29.0 ± 2.51 35.6 ± 0.99 26.0 ± 0.38 23.9 ± 0.83 25.9 ± 2.28 72.8 ± 0.03 33.4 ± 1.26

Concat 21.7 ± 0.17 28.1 ± 0.85 37.8 ± 3.09 26.6 ± 0.33 27.4 ± 0.29 33.4 ± 1.20 72.5 ± 0.30 35.4 ± 0.89

Data Selection 19.5 ± 0.76 25.7 ± 0.28 33.8 ± 2.23 25.9 ± 0.65 22.6 ± 1.24 30.6 ± 2.01 74.3 ± 0.28 33.2 ± 1.06

No-CL 20.1 ± 1.41 28.1 ± 0.85 37.8 ± 3.09 26.6 ± 0.33 27.4 ± 0.29 31.8 ± 0.28 72.2 ± 0.46 34.9 ± 0.96

Table 6: Balanced accuracy by loss.



E Index Importance Changes

Index Change Stages Magnitude

AN-Pairs
Corrected TTR Medium to late 8.70%
Ratio of nx entity grid transitions Medium to late 7.89%
Semantic Richness Medium to late 7.86%

GED
Ratio of nx entity grid transitions Medium to late 3.18%
Lexical sophistication Medium to late 2.26%
Ratio of Coordinating Conjunction to Adjectives Medium to late 1.84%

SNLI
Ratio of Subordinating Conjunction to Adverbs Early to late 1.00%
Noun-subject transitions Early to late 0.79%
Number of topics (Weebit-based) Early to late 0.77%

ANLI
Verb sophistication Medium to late 0.98%
T-unit length Medium to late 0.96%
Log tokens over log sentences Early to medium 0.94%

CoLA
Object-noun transitions Medium to late 0.78%
TTR Early to late 0.75%
# Clauses Medium to late 0.75%

RTE
Adverb to adjective ratio Early to late 3.30%
# T-units Early to late 3.27%
Mean sentence length Early to late 3.15%

SST-2
Noun-subject transitions Early to late 1.76%
Coordinating conjunction per sentence Early to late 1.75%
Verbs per token Medium to late 1.72%

Table 7: Top three moving linguistic indices.

Table 7 shows indices with maximum change in their ρs between any two stages. Only the relative
differences and ranking of ρ values are important. Therefore, the table displays relative changes in the
magnitude of the importance factors. The indices with a large change magnitude indicate that they are
either influential at an early stage of training and drop in importance at the later stage, or vise versa. See
our analysis on these indices in §3.7.


