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Abstract
Curriculum learning provides a systematic ap-
proach to training. It refines training progres-
sively, tailors training to task requirements, and
improves generalization through exposure to di-
verse examples. We present a curriculum learn-
ing approach that builds on existing knowledge
about text and graph complexity formalisms
for training with text graph data. The core
part of our approach is a novel data scheduler,
which employs “spaced repetition” and com-
plexity formalisms to guide the training pro-
cess. We demonstrate the effectiveness of the
proposed approach on several text graph tasks
and graph neural network architectures. The
proposed model gains more and uses less data;
consistently prefers text over graph complex-
ity indices throughout training, while the best
curricula derived from text and graph complex-
ity indices are equally effective; and it learns
transferable curricula across GNN models and
datasets. In addition, we find that both node-
level (local) and graph-level (global) graph
complexity indices, as well as shallow and tra-
ditional text complexity indices play a crucial
role in effective curriculum learning.

1 Introduction

Message passing (Gilmer et al., 2017) is a widely
used framework for developing graph neural net-
works (GNNs), where node representations are iter-
atively updated by aggregating the representations
of neighbors (a subgraph) and applying neural net-
work layers to perform non-linear transformation
of the aggregated representations. We hypothesize
that topological complexity of subgraphs or linguis-
tic complexity of text data can affect the efficacy of
message passing techniques in text graph data, and
propose to employ such complexity formalisms in
a novel curriculum learning framework for effec-
tive training of GNNs. Examples of graph and text
complexity formalisms are node centrality and con-
nectivity (Kriege et al., 2020); and word rarity and
type token ratio (Lee et al., 2021a) respectively.

In Curriculum learning (CL) (Bengio et al.,
2009) data samples are scheduled in a meaningful
difficulty order, typically from easy to hard, for iter-
ative training. CL approaches have been successful
in various areas (Graves et al., 2017; Jiang et al.,
2018; Castells et al., 2020), including NLP (Settles
and Meeder, 2016; Amiri et al., 2017; Zhang et al.,
2019; Lalor and Yu, 2020; Xu et al., 2020; Kreutzer
et al., 2021; Agrawal and Carpuat, 2022; Maharana
and Bansal, 2022). Existing approaches use data
properties such as sentence length, word rarity or
syntactic features (Platanios et al., 2019; Liu et al.,
2021); and model properties such as training loss
and its variations (Graves et al., 2017; Zhou et al.,
2020) to order data samples for training. However,
other types of complexity formalisms such as those
developed for graph data are largely underexplored.
Recently, Wang et al. (2021) proposed to estimate
graph difficulty based on intra- and inter-class dis-
tributions of embeddings, realized through neural
density estimators. Wei et al. (2023) employed a
selective training strategy that targets nodes with
diverse label distributions among their neighbors
as difficult to learn nodes. Vakil and Amiri (2022)
used loss trajectories to estimate the emerging diffi-
culty of subgraphs and weighted sample losses for
data scheduling.We encourage readers to see (Li
et al., 2023; Yang et al., 2023) for recent surveys
on graph CL approaches.

We propose that existing knowledge about text
and graph complexity can inform better curriculum
development for text graph data. For example, a
training node pair that shares many common neigh-
bors is expected to be easier for link prediction than
a local bridge1 that lacks common neighbors. Mo-
tivated by this rationale, we present a complexity-
guided CL approach for text graphs (TGCL), which
employs multiview complexity formalisms to space
training samples over time for iterative training. It
advances existing research as follows:

1An edge that is not part of a triangle in the graph.
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Figure 1: The architecture of the proposed model, TGCL. It takes subgraphs and text(s) of their target node(s)
as input. The radar chart shows graph complexity indices which quantify the difficulty of each subgraphs from
different perspectives (text complexity indices are not shown for simplicity). Subgraphs are ranked according to
each complexity index and these rankings are provided to TGCL scheduler to space samples over time for training.

• a new curriculum learning framework that em-
ploys graph and text complexity formalisms
for training GNNs on text graph data, and

• insights into the learning dynamics of GNNs,
i.e., which complexity formalisms are learned
by GNNs during training.

We conduct extensive experiments on real-world
datasets and across GNN models, focusing on link
prediction and node classification tasks in text
graphs. The proposed model gains 5.1 absolute
points improvement in average score over the state-
of-the-art model, across datasets and GNN models,
while using 39.2% less data for node classification
than high-performing baselines. The results show
that both node-level (local) and graph-level (global)
complexity indices play a crucial role in training.
More interestingly, although the best curricula de-
rived from text and graph complexity indices are
equally effective, the model consistently prefers
text over graph complexity indices throughout all
stages of training. Finally, the curricula learned by
the model are transferable across GNN models and
datasets2.

2 Method
A curriculum learning approach should estimate
the complexity of input data, determine the pace of
introducing samples based on difficulty, and sched-
ule data samples for training. As Figure 1 shows,
TGCL tackles these tasks by quantifying sample
difficulty through complexity formalisms (§2.1),
gradually introducing training samples to GNNs

2Code and data are available at https://clu.cs.uml.
edu/tools.html

based on a flexible “competence” function (§2.2),
and employing different data schedulers that or-
der training samples for learning with respect to
model behavior (§2.3). By integrating these com-
ponents, TGCL establishes curricula that are both
data-driven and model-dependent. In what follows,
we present approaches for addressing these tasks.

2.1 Complexity Formalisms
Graph complexity (Kashima et al., 2003; Vish-
wanathan et al., 2010; Kriege et al., 2020) indices
are derived from informative metrics from graph
theory, such as node degree, centrality, neighbor-
hood and graph connectivity, motif and graphlet
features, and other structural features from random
walk kernels or shortest-path kernels (Borgwardt
and Kriegel, 2005). We use 26 graph complexity
indices to compute the complexity score of data
instances in graph datasets, see Table 1, and details
in Appendix A.1. Since data instances for GNNs
are subgraphs, we compute complexity indices for
each input subgraph. For tasks involving more
than one subgraph (e.g., link prediction), we aggre-
gate complexity scores of the subgraphs through
an order-invariant operation such as sum().

Linguistic Complexity Lee et al. (2021a) im-
plemented various linguistics complexity features
for readability assessment. We use 14 traditional
and shallow linguistics indices such as Smog in-
dex, Coleman Liau Readability Score, and sentence
length-related indices as text complexity indices in
our study. See Appendix A.2 for details. We nor-
malize complexity scores for each text and graph
index using the L2 norm.

https://clu.cs.uml.edu/tools.html
https://clu.cs.uml.edu/tools.html


Degree based Computing based
degree ⋆ ramsey R2 ⋆
treewidth min degree ⋆ average clustering
degree mixing matrix ⋆ resource allocation index
average neighbor degree ⋆ Connectivity
average degree connectivity ⋆ subgraph connectivity
degree assortativity coef. ⋆ local node connectivity ⋆
Centrality Basic properties
katz centrality ⋆ large clique size ⋆
degree centrality ⋆ common neighbors
closeness centrality ⋆ number of edges
eigenvector centrality ⋆ number of nodes
group degree centrality ⋆ density ⋆
Flow property local bridges ⋆
min weighted dominating set
min weighted vertex cover
min edge dominating set
min maximal matching

Table 1: Graph complexity indices. These indices are
manually divided into six categories to ease the presenta-
tion and analysis of our results. Indices that are used in
our experiments are labeled by the ⋆ symbol. Appendix
A provides details on the selection process.

2.2 Competence for Gradual Inclusion

Following the core principle of curriculum learn-
ing (Bengio et al., 2009), we propose to gradually
increase the contribution of harder samples as train-
ing progresses. Specifically, we derive the compe-
tence function c(t) that determines the top fraction
of training samples that the model is allowed to use
for training at time step t. We derive a general form
of c(t) by assuming that the rate of competence–
the rate by which new samples are added to the
current training data–is equally distributed across
the remaining training time:

dc(t)

dt
=

1− c(t)

1− t
, (1)

where t ∈ [0, 1] is the normalized value of the
current training time step, with t = 1 indicating
the time after which the learner is fully competent.
Solving this differential equation, we obtain:∫

1

1− c(t)
dc(t) =

∫
1

1− t
c(t), (2)

which results in c(t) = 1− exp(b)(1− t) for some
constant b. Assuming the initial competence c(t =
0) is c0 and final competence c(t = 1) is 1, we
obtain the following linear competence function:

c(t) = min
(
1, 1− (1− c0)(1− t)

)
. (3)

We modify the above function by allowing
flexibility in competence so that models can use
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Figure 2: Three competence functions, each imposing a
different type of curriculum on GNNs.

larger/smaller fraction of training data than what
the linear competence allows at different stages
of training. This consideration results in a more
general form of competence function:

c(t) = min
(
1, (1− (1− c0)(1− t))

1
α

)
, (4)

where α > 0 specifies the rate of change for compe-
tence during training. As Figure 2 shows, a larger α
quickly increases competence, allowing the model
to use more data after a short initial training with
easier samples. We expect such curricula to be
more suitable for datasets with lower prevalence of
easier samples than harder ones, so that the learner
do not spend excessive time on the small set of
easy samples at earlier stages of training. On the
other hand, a smaller α results in a curriculum that
allows more time for learning from easier samples.
We expect such curricula to be more suitable for
datasets with greater prevalence of easier samples,
as it provides sufficient time for the learner to as-
similate the information content in easier samples
before gradually moving to harder ones.

2.3 Spaced Repetition for Ordering Samples

Spaced repetition is a learning technique that in-
volves reviewing and revisiting information at inter-
vals over time. We propose to use spaced repetition
to schedule training data for learning. Specifically,
we develop schedulers that determine (data from)
which complexity indices should be used for train-
ing at each time. For this purpose, we learn a delay
parameter for each index, which signifies the num-
ber of epochs by which the usage of data from the
index should be delayed before re-introducing the
index into the training process. The schedulers dy-
namically (during training) increase or decrease the
delay for indices based on the difficulty of learning
their top c(t) samples by the GNN model.

As Algorithm 1 shows, the model first computes
complexity indices for training and validation sam-
ples, and sorts the samples for each index according
to a pre-defined order. All indices are initialized



Algorithm 1: TGCL Scheduler
input :

L: Complexity indices
M: GNN Model
D: Training data of size n
V: Validation data of size m
S: Index sort order(s)

output : Trained model M∗

1 LD
i ← Complexity of training data based on index i

2 LV
i ← Complexity of validation data based on index i

3 LD
i ← sort(LD

i , S), ∀i
4 LV

i ← sort(LV
i , S), ∀i

5 δi = 1, ∀i ∈ L #initialize delay for indices
6 for t← 0 to E do
7 current_batch← {i: δi <= 1}
8 delayed_batch← {i: δi > 1}
9 c(t)← competence from Eq (4)

10 for i ∈ current_batch do
11 Train M with top n× c(t) samples in LD

i

12 end
13 for i ∈ delayed_batch do
14 δi ← δi − 1
15 end
16 for i ∈ current_batch do
17 s← top m× c(t) samples in LV

i

18 di ← loss(s)
19 ai ← prediction_score(s)
20 γ ← validation_performance(s)
21 δi ← compute_delay(i, η, d, a, γ)
22 end
23 end

with a delay of one, δi = 1, ∀i. At every iteration,
the model divides the indices into two batches: the
current batch, those with an estimated delay δi ≤ 1
iteration; and the delayed batch, those with δi > 1.
Indices in the current batch are those that the sched-
uler is less confident about their learning by the
GNN and those in the delayed batch are indices
that are better learned by the GNN. At each iter-
ation, the scheduler prioritizes indices in the cur-
rent batch by training the GNN using their top c(t)
fraction of samples, see (4), while samples of the
delayed indices are not used for training. After
each iteration, all delay values are updated.

2.3.1 Delay Estimation
We develop schedulers that assign greater delays to
indices that contain relatively easier samples within
their top c(t) samples. Our intuition is that these
samples are already learned to a satisfactory de-
gree, thus requires less frequent exposure during
training. Delaying such indices can result in better
allocation of training resources by preventing un-
necessary repetition of already learned samples and
potentially directing training toward areas where
model’s generalization can be further improved.

For this purpose, we first develop a scheduler
f() to estimate the optimized sample-level delay

Algorithm 2: Compute Optimized Delay
input :

i: Index
di: Loss vector
ai: Probability score vector
η: Recall threshold
γ: Current model performance on val. data

output :δi: Delay for index i

1 τ̂i ← calculate optimal τ using (12)
2 t̂i ← calculate optimal delay using (5)

3 δi ←
∑

j t̂ij

|t̂i|
using (6)

4 return δi

t̂i (Amiri et al., 2017) for the top c(t) samples
of each index i in the current batch. We learn the
delays such that model performance on the samples
is maintained or improved after the delay:

t̂i = argmaxtij ,j∈Qt
i

(
f
(
dij×tij

γ , τ̂i

)
− η

)2

,(5)

where Qt
i is the top c(t) fraction of samples of

index i at iteration t, di is the instantaneous losses
of these samples, ti is the delay for these samples
(a vector to be learned), γ is the performance of the
current model on validation data, and η ∈ (0, 1) is
the expected model performance on samples in Qt

i

after the delay. f() is a non-increasing function
of xi = di×ti

γ , and is responsible for assigning
greater delays (ti) to easier samples (smaller di) in
stronger networks (greater γ) (Amiri et al., 2017).
Intuitively, (5) estimates the maximum delay t̂i for
the samples in Qt

i such that, with a probability of
η, the performance of the model is maintained or
improved for these samples at iteration e+ t̂i. The
hyperparameter τ controls the rate of decay for
f , which is optimized using the achieved model
performance in hindsight, see §2.3.2. The delay for
each index i is obtained by averaging the optimal
delays of its top c(t) samples (Qt

i) as follows:

δi =
1

|t̂i|

∑
j∈Qt

i

t̂ij . (6)

In addition, indices in the delayed batch are not
used for training at current iteration and thus their
delays are reduced by one, Line 14, Algorithm 1.
We note that, given the improvement gain by the
GNN model as training progresses, the above ap-
proach is conservative and provides a lower bound
of the optimal delays for indices.

2.3.2 Scheduling Functions
A good scheduler should assign greater delays to
easier samples in stronger models. Therefore, we



can use any non-increasing function of xi =
di×ti

γ .
We consider the following functions:

flap (xi, τi) = exp(−xiτi) (7)

fsec (xi, τi) =
2

exp(−τix2
i ) + exp(τix2

i )
(8)

fcos (xi, τi) =

{
1
2 cos (τiπxi) + 1 xi <

1
τi

0 otherwise

(9)

fqua (xi, τi) =

{
1− τix

2
i x2

i <
1
τi

0 otherwise
(10)

flin (xi, τi) =

{
1− τixi xi <

1
τi

0 otherwise
(11)

For each index i, we estimate the optimal value
of the hyperparameter τi using information from
previous iteration. Specifically, given the sample
loss and validation performance from the previous
iteration for the top c(t − 1) samples of index i
(Qt−1

i ), and the current accuracy of the GNN model
on these samples (pi), we estimate τi as:

τ̂i = argminτi (f (xi, τi)− pi)
2 , (12)

∀j ∈ Qe−1
i , pij >= η.

See the steps for delay estimation in Algorithm 2.

2.4 Base GNN Models
Our approach can be used to train any GNN model.
We consider four models for experiments: Graph-
SAGE (Hamilton et al., 2017), graph convolutional
network (GCN) (Kipf and Welling, 2017a), graph
attention networks (GAT) (Veličković et al., 2018),
and graph text neural network (GTNN) (Vakil and
Amiri, 2022). GraphSAGE is a commonly-used
model that learns node embeddings by aggregating
the representation of neighboring nodes through
an order-invariant operation. GCN is an efficient
and scalable approach based on convolution neural
networks which directly operates on graphs. GAT
extends GCN by employing self-attention layers to
identify informative neighbors while aggregating
their information. GTNN extends GraphSAGE for
NLP tasks by directly using node representations
at the prediction layer as auxiliary information, al-
leviating information loss in the iterative process
of learning node embeddings in GNNs.

3 Experiments

3.1 Datasets
Ogbn-arxiv from Open Graph Benchmark (Hu
et al., 2020) is a citation network of computer sci-

ence articles. Each paper is provided with an em-
bedding vector of size 128, obtained from average
word embeddings of the title and abstract of the
paper and categorized into one of the 40 categories.

Cora (McCallum et al., 2000) is a relatively
small citation network, in which papers are cat-
egorized into one of the seven subject categories
and is provided with a feature word vector obtained
from the content of the paper.

Citeseer (Kipf and Welling, 2017b) a citation
network of scientific articles, in which nodes are
classified six classes. We use the same data split as
reported in (Zhang et al., 2022).

Gene, Disease, Phenotype Relation (GDPR)
(Vakil and Amiri, 2022) is a large scale dataset
for predicting causal relations between genes and
diseases from their text descriptions. Each node in
the graph is a gene or disease and an edge repre-
sents (causal) relation between genes and diseases.

Gene Phenotype Relation (PGR) (Sousa et al.,
2019) is a dataset for extracting relations between
gene and phenotypes (symptoms) from short sen-
tences. Each node in the graph is a gene, pheno-
type or disease and an edge represents a relation
between its end points. Since the original dataset
does not contain a validation split, we generate a
validation set from training data through random
sampling, while leaving the test data intact. The
data splits will be released with our method.

3.2 Baselines

In addition to the GNN models described in §2.4,
we use the following curriculum learning baselines
for evaluation:

Competence CL (CCL) (Platanios et al., 2019)
is a competence-based CL approach that gradually
introduces the data in increasing order of difficulty
to the model according to a competence function.
The model only works with one difficulty score,
which we provide by summing the complexity in-
dices for each training sample.

SuperLoss (SL) (Castells et al., 2020) is a CL
framework that determines the difficulty of samples
by comparing them against the loss value of their
corresponding batches. It assigns greater weights
to easy samples and gradually introduces harder
examples as training progresses.



Node Classification Link Prediction
GNN Model Curriculum Ogbn-Arxiv Cora Citeseer GDPR PGR

Acc Acc Acc F1 F1 Average

G
T

N
N

No-CL 71.6±0.1 90.4±1.0 76.8±0.1 84.9±0.3 93.9±2.0 83.5±0.7
CurGraph 68.6±0.1 86.9±0.8 59.9±1.1 81.5±1.4 73.9±0.2 74.2±0.7
SL 76.1±0.3 91.0±0.3 77.9±0.8 85.0±0.3 94.9±0.6 85.0±0.4
Trend-SL 71.7±0.3 90.0±0.5 77.9±0.1 84.9±0.0 95.3±0.0 84.0±0.2
CCL 76.4±0.2 97.6±0.3 76.6±0.7 83.6±0.0 92.5±0.7 85.3±0.4
CLNode 69.7±0.5 75.0±0.1 55.7±5.9 - - 66.8±2.2
TGCL 76.3±0.0 96.1±0.8 76.7±0.8 84.9±0.3 93.1±0.7 85.4±0.5

G
ra

ph
SA

G
E

No-CL 71.4±0.1 90.0±0.5 75.6±0.5 25.4±0.1 91.6±1.0 70.8±0.4
CurGraph 69.0±0.2 86.7±1.0 62.8±1.0 65.6±0.5 71.3±0.0 71.1±0.5
SL 71.8±0.2 89.7±0.5 75.5±1.3 25.2±0.1 91.2±0.6 70.7±0.5
Trend-SL 71.5±0.4 88.7±1.3 74.6±1.3 25.2±0.3 91.2±0.6 70.3±0.8
CCL 75.9±0.0 96.1±0.3 74.4±0.2 54.8±0.8 88.7±1.6 78.0±0.6
CLNode 60.2±2.4 68.9±2.2 61.6±4.7 - - 63.5±3.1
TGCL 75.8±0.3 95.8±0.3 75.4±0.5 56.8±0.1 92.4±0.1 79.2±0.2

G
C

N

No-CL 71.8±0.1 90.8±1.0 76.3±0.6 25.2±1.7 85.9±1.1 70.0±0.9
CurGraph 70.3±0.3 88.2±0.0 61.3±1.7 70.0±1.4 67.2±0.7 71.4±0.8
SL 71.7±0.3 89.9±0.8 75.5±1.3 24.5±1.1 84.9±0.4 69.3±0.8
Trend-SL 71.8±0.3 90.0±0.5 76.3±1.5 24.9±0.7 84.5±1.0 69.5±0.8
CCL 74.4±0.2 91.9±1.0 72.5±0.6 52.3±0.5 84.6±1.5 75.1±0.8
CLNode 60.7±2.0 75.5±1.4 65.5±0.7 - - 67.2±1.4
TGCL 74.6±0.2 92.3±0.0 73.6±0.3 53.2±0.4 85.2±0.1 75.8±0.2

G
AT

No-CL 71.0±0.1 89.1±0.3 76.5±0.7 18.8±0.3 85.0±0.9 68.1±0.5
CurGraph 69.8±0.2 85.6±0.0 61.3±1.7 92.9±0.2 57.5±1.6 73.4±0.7
SL 71.7±0.4 88.2±0.0 75.4±0.6 18.8±0.3 84.8±1.1 67.8±0.5
Trend-SL 71.5±0.1 89.9±0.3 76.4±1.1 18.8±0.3 85.1±0.5 68.3±0.5
CCL 74.7±0.3 92.6±0.0 73.3±0.4 34.0±0.4 84.3±0.9 71.8±0.4
CLNode 64.7±0.3 67.8±4.3 63.9±0.0 - - 65.5±1.5
TGCL 74.8±0.0 91.3±0.8 73.8±0.1 34.5±0.6 85.9±1.1 72.1±0.5

Table 2: F1 and Accuracy performance of different curriculum learning models on node classification (Ogbn-Arxiv,
Cora, and Citeseer datasets), and link prediction (GDPR and PGR datasets) using GTNN, GraphSAGE, GCN and
GAT as base GNN models across three different seeds. All GNN models are initialized with corresponding text
embeddings for nodes of each dataset. For the proposed model, TGCL, the best performing kernels for Ogbn-Arxiv,
Cora Citeseer, GDPR and PGR are lap, qua, sec, cos, and qua respectively; we report the top-performing kernel
function with average performance and standard deviation over two runs in the Table, bold indicates best performing
model, see §3.3 for details.

CurGraph (Wang et al., 2021) is a CL approach
for GNNs that computes difficulty scores based on
the intra- and inter-class distributions of embed-
dings, realized through a neural density estimator,
and develops a smooth-step function to gradually
use harder samples in training. We implemented
this approach by closely following the paper.

Trend SL (Vakil and Amiri, 2022) extends Su-
perLoss by discriminating easy and hard samples
based on their recent loss trajectories. Similar to
SL, Trend-SL can be used with any loss function.

CLNode (Wei et al., 2023) employs a selective
training strategy that estimates sample difficulty
based on the diversity in the label of neighboring
nodes and identifies mislabeled difficult nodes by
analyzing their node features. CLNode implements
an easy to hard transition curriculum.

3.3 Settings

In the competence function (4), we set the value
of α from [0.2, 5]. In (5) and (12), we set η from
[0.6, 1) with step size of 0.1 for link prediction and
from [0.7, 1) with the step size of 0.5 for node clas-
sification. The best kernel for the datasets in the
reported results are cos, qua, lap, qua, sec, and
the best value of η is 0.7, 0.9, 0.8, 0.75, 0.9 for
GDPR, PGR, Ogbn-Arxiv, Cora and Citeseer re-
spectively. We consider a maximum number of 100
and 500 training iterations for link prediction and
node classification respectively. In addition, we
order samples for each index in four different ways,
ascending/descending (low/high to high/low com-
plexity), and medium ascending/descending (where
instances are ordered based on their absolute dis-
tance to the standard Normal distribution mean of
the complexity scores in ascending/descending or-



der). We evaluate models based on the F1 score for
link prediction and accuracy for node prediction
task using (Buitinck et al., 2013). Finally, we run
all experiments on a single A100 40GB GPU.

3.4 Main Results
Table 2 shows the performance of our approach for
link prediction and node classification tasks using
four GNN models. The performance of all models
on link prediction and node classification signifi-
cantly decreases when we switch from GTNN to
any other GNN as encoder, which indicates ad-
ditional text features as auxiliary information in
GTNN are useful for effective learning.See Ap-
pendix A.6 for the performance of kernel functions.

For both link prediction and node classification
tasks, most curricula improve the performance com-
pared to standard training (No-CL in Table 2). On
an average, TGCL performs better than other CL
baselines with most GNN models. CurGraph show
lower performance than other curricula and No-
CL in almost all settings, except when used with
GraphSAGE, GCN and GAT on GDPR. The lower
overall performance of CurGraph and CLNode may
be due to the static order of samples or monotonic
curricula imposed by the model, or our implemen-
tation of CurGraph. The large performance gains
of TGCL on node classification and link prediction
datasets against No-CL indicates the importance
of the information from difficulty indices, their
systematic selection, timely delays, and revisiting
indices progressively during training, which help
the model generalize better.

4 Curricula Introspection
We conduct several analysis on TGCL scheduler to
study its behavior and shed light on the reasons for
its improved performance. Due to space limitations,
we conduct these experiments on one representative
dataset from each task, PGR for link prediction and
Ogbn-Arxiv for node classification.

4.1 Learning Dynamics
For these experiments, we divide training iterations
into three phases: Phase-1 (early training, the first
33% of iterations), Phase-2 (mid training, the sec-
ond 33% of iterations), and Phase-3 (late training,
the last 33% of iterations). We report the number of
times graph complexity indices appeared in the cur-
rent batch at each phase. We group indices based
on their types and definitions as reported in Table 1
to ease readability.
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Figure 3: The number of times each index appeared
in the current batch at different phases of training for
(a): PGR (link prediction) and (b): Ogbn-Arxiv (node
classification) tasks. Phases 1–3 indicate early, mid, and
late training respectively quantified by the first, second,
and last 33% of training iterations. Degree (local) and
centrality (global) based indices are frequently used for
link prediction, while degree and basic (local) based
indices are frequently used for node classification.

Figures 3a and 3b show the results. The fre-
quency of use for indices follows a decreasing trend.
This is expected as in the initial phase the model
tends to have lower accuracy in its predictions, re-
sulting in higher loss values. Consequently, the
scheduler assigns smaller delays to most indices,
ensuring that they appear in the current batch at
the early stage of training. However, as the model
improves its prediction accuracy, the scheduler be-
comes more flexible with delays during the latter
stages of training. This increased flexibility allows
the scheduler to adjust the delay values dynamically
and adapt to the learning progress of the model. In
addition, the results show that the model focuses on
both local and global indices (degree and centrality
respectively) for link prediction, while it prioritizes
local indices (degree and basic) over global indices
for node classification throughout the training. See
Appendix A.4 for detailed results.

4.2 TGCL Gains More and Uses Less Data

In standard training, a model uses all its n training
examples per epoch, resulting in a total number of
n× E updates. TGCL uses on an average 39.2%
less training data for node classification for GTNN
model, by strategically delaying indices throughout
the training. Figure 4 shows the average number of
examples used by different CL models for training
across training iteration, computed across all node
classification datasets. Our model TGCL uses less
data as the training progresses, the standard training
(No-CL) and some other curricula such as SL and
SL-Trend uses all training data at each iteration.
CCL, apart from TGCL, uses less data compared to
other CL models. An intriguing observation is that
despite both CCL and TGCL are allowed to use



more data as training progresses, TGCL uses less
data by strategically delaying indices and avoiding
unnecessary repetition of samples that have already
been learned, resulting in better training resources
and reduced redundancy.
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Figure 4: Average number of samples used by different
CL frameworks across all node classification datasets.
The number remains constant for No-CL, increases for
CCL as the training progresses. TGCL uses less data
than others by spacing samples over time.

Figure 5: Percentage of indices used for training at every
epoch and the average validation accuracy on samples
used for training at each iteration on Ogbn-Arxiv. In
initial epochs, most indices are frequently used for train-
ing until the performance reaches the recall threshold
η = .80, after which the scheduler starts delaying some
of the indices. Model prevents repetition of already
learned samples, while directing the training towards
areas where generalization can be further improved.

In spaced repetition, a spacing effect is observed
when the difference between subsequent reviews of
learning materials increases as learning progresses.
As a result, the percent of the indices used by model
for training should decrease as the model gradually
becomes stronger. Figure 5 illustrates this behavior
exhibited by TGCL. This results demonstrates that
the delays assigned by the scheduler effectively
space out the data samples over time, leading to an
effective training process.

4.3 TGCL Prioritizes Linguistics Features
For this analysis, we calculate linguistic indices
(detailed in §2.1 and Appendix A.2) from the paper
titles in Ogbn-Arxiv. We augment the graph indices
with linguistics indices and retrain our top perform-
ing model, GTNN, on Ogbn-Arxiv to assess the
importance of linguistics indices in the training pro-
cess. The resulting accuracy is 76.4, which remains

unchanged compared to using only graph indices.
However, we observe that the model consistently
prefers linguistic indices (Coleman Liau Readabil-
ity and sentence length related indices), followed
by the degree based indices, throughout all phases
of the training. Figure 6 shows the contribution of
linguistic and graph indices in different phases of
training. While linguistic indices do not lead to an
accuracy beyond 76.4, they are consistently priori-
tized by TGCL over graph indices. Incorporating
additional linguistic indices have the potential to
further enhance performance.
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Figure 6: The number of times each index appeared
in the current batch at different phases of training for
Ogbn-Arxiv when linguistic indices are included. ShaF
and TraF are shallow and traditional formulas features
described in Appendix A.2.

4.4 TGCL Learns Transferable Curricula

We study the transferability of curricula learned
by TGCL across datasets and models. For these
experiments, we track the curriculum (competence
values and indices used for training at every itera-
tion) of a source dataset and apply the curriculum
to a target dataset using GTNN as the base model.
Table 3 shows learned curricula are largely transfer-
able across dataset, considering the performance of
No-CL as the reference. We note that the slight re-
duction in performance across datasets (compared
to the source curricula), can be negligible consid-
ering the significant efficiency that can be gained
through the adoption of free curricula (39.2% less
training data, see §4.2). Table 4 shows the curric-
ula learned by TGCL can be transferred across
GNN models, and in some cases improves the per-
formance, e.g., GAT to GCN. Further analysis on
these results is the subject of our future works.

5 Related Work
In Curriculum learning (CL) (Bengio et al., 2009)
data samples are scheduled in a meaningful diffi-
culty order, typically from easy to hard, for iterative
training. In graph machine learning, Wang et al.
(2021) introduced CurGraph, a curriculum learning
method designed for sub-graph classification. This



XXXXXXXXsource
target Ogbn-Arxiv Cora Citeseer

Ogbn-Arxiv 76.6 94.5 75.3
Cora 76.1 96.7 76.8
Citeseer 71.9 93.7 77.8

No-CL (GTNN) 71.1 91.5 75.3

Table 3: Performance of curricula transfer across node
classification datasets using GTNN. Underline indicates
the curricula learned on source dataset.

XXXXXXXXsource
target GTNN GraphSAGE GCN GAT

GTNN 76.4 75.9 74.7 74.3
GraphSAGE 76.4 75.9 74.7 74.6
GCN 75.8 75.2 74.4 74.0
GAT 76.2 76.0 75.2 74.8

No-CL 71.1 71.5 71.8 71.8

Table 4: Performance of curricula transfer across GNN
models on Ogbn-Arxiv. Underline indicates the curric-
ula learned on source GNN model.

model assesses the difficulty of samples by analyz-
ing both intra-class and inter-class distributions of
sub-graph embeddings. It then organizes the train-
ing instances, by first exposing easier sub-graphs
and gradually introducing more challenging ones.
Wei et al. (2023) adopted a selective training strat-
egy, targeting nodes with diverse label distributions
among their neighbors as particularly challenging
to learn. Liu et al. (2023) proposed HSAN, which
clusters graphs using curriculum and contrastive
learning and measures the difficulty of training
pairs using attribute and structural similarity and
use weights to select hard negative samples. Wang
et al. (2023) proposed an approach called CHEST
to improve recommendation using heterogeneous
graph data and combine local and global context
information to guide curriculum development.

In contrast to static curriculum approaches, Sax-
ena et al. (2019) proposed a dynamic curriculum ap-
proach that automatically assigns confidence scores
to samples based on their estimated difficulty. How-
ever this model requires additional trainable pa-
rameters. To address this limitation, Castells et al.
(2020) introduced the SuperLoss framework to cal-
culate optimal confidence scores for each instance
using a closed-form solution. In (Vakil and Amiri,
2022), we extended SuperLoss to incorporate trend
information at the sample level. We utilized loss
trajectories to estimate the emerging difficulty of
subgraphs and employed weighted sample losses
for data scheduling in order to create effective cur-
ricula for training GNNs and understanding their

learning dynamics.
Current curriculum learning methodologies in

NLP rely on data properties, e.g., sentence length,
word rarity, or syntactic features (Platanios et al.,
2019; Liu et al., 2021), or annotation disagree-
ment (Elgaar and Amiri, 2023); as well as model
properties such as training loss and its variations
(Graves et al., 2017; Amiri et al., 2017) to sequence
data samples for training. Elgaar and Amiri (2023)
developed a curriculum discovery framework based
on prior knowledge of sample difficulty, utilized an-
notation entropy and loss values. They concluded
that curricula based on easy-to-hard or hard-to-easy
transition are often at the risk of under-performing,
effective curricula are often non-monotonic, and
curricula learned from smaller datasets perform
well on larger datasets.

Other instances of curriculum learning for tex-
tual data have primarily centered on machine trans-
lation and language comprehension. For instance,
Agrawal and Carpuat (2022) introduced a frame-
work for training non-autoregressive sequence-to-
sequence models for text editing. Additionally, Ma-
harana and Bansal (2022) designed various curricu-
lum learning approaches where the teacher model
assesses the difficulty of each training example
by considering factors such as question-answering
probability, variability, and out-of-distribution mea-
sures. Other notable work in various domain in-
cludes (Graves et al., 2017; Jiang et al., 2018;
Castells et al., 2020; Settles and Meeder, 2016;
Amiri et al., 2017; Zhang et al., 2019; Lalor and
Yu, 2020; Xu et al., 2020; Kreutzer et al., 2021)
which have contributed to its broader adoption.

6 Conclusion and Future Work

We introduce a novel curriculum learning approach
for text graph data and graph neural networks, in-
spired by spaced repetition. By leveraging text and
graph complexity formalisms, our approach deter-
mines the optimized timing and order of training
samples. The model establishes curricula that are
both data-driven and model- or learner-dependent.
Experimental results demonstrate significant per-
formance improvements in node classification and
link prediction tasks when compared to strong base-
line methods. Furthermore, our approach offers po-
tential for further enhancements by incorporating
additional complexity indices, exploring different
scheduling functions and model transferability, and
extending its applicability to other domains.



Broader Impacts

The advancements in curriculum learning signal a
promising direction for the optimization of training
processes within NLP and graph data. Based on the
principles of “spaced repetition” and text and graph
complexity measures, the proposed work enhances
the efficiency of training and improves model gen-
eralization capabilities. This is particularly crucial
for applications reliant on graph representations of
text, such as social network analysis, recommen-
dation systems, and semantic web. Furthermore,
the method’s ability to derive transferable curric-
ula across different models and datasets suggests
a more applicable strategy, potentially enabling
seamless integration and deployment across varied
NLP applications and domains.

Limitation
The proposed approach relies on the availability of
appropriate complexity formalisms. If the selected
indices do not capture the desired complexity, the
curricula may not be optimally designed. The ap-
proach primarily focuses on text graph data and
graph neural networks, and the results may not
directly apply to other types of data or architec-
tures. The estimation of optimized time and order
for training samples introduces additional compu-
tational overhead. This can be a limitation in sce-
narios where real-time training is required, e.g., in
processing streaming data of microposts.

References
Sweta Agrawal and Marine Carpuat. 2022. An imita-

tion learning curriculum for text editing with non-
autoregressive models. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7550–
7563, Dublin, Ireland. Association for Computational
Linguistics.

Hadi Amiri, Timothy Miller, and Guergana Savova.
2017. Repeat before forgetting: Spaced repetition
for efficient and effective training of neural networks.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning.

Karsten M Borgwardt and Hans-Peter Kriegel. 2005.
Shortest-path kernels on graphs. In Fifth IEEE in-
ternational conference on data mining (ICDM’05),
pages 8–pp. IEEE.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Ar-
naud Joly, Brian Holt, and Gaël Varoquaux. 2013.
API design for machine learning software: experi-
ences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine
Learning.

Thibault Castells, Philippe Weinzaepfel, and Jerome
Revaud. 2020. Superloss: A generic loss for robust
curriculum learning. Advances in Neural Information
Processing Systems.

Mohamed Elgaar and Hadi Amiri. 2023. HuCurl:
Human-induced curriculum discovery. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1862–1877, Toronto, Canada. Association for
Computational Linguistics.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neural mes-
sage passing for quantum chemistry. In International
conference on machine learning, pages 1263–1272.
PMLR.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi
Munos, and Koray Kavukcuoglu. 2017. Automated
curriculum learning for neural networks. In interna-
tional conference on machine learning, pages 1311–
1320. PMLR.

Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008.
Exploring network structure, dynamics, and func-
tion using networkx. Technical report, Los Alamos
National Lab.(LANL), Los Alamos, NM (United
States).

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. In
Advances in neural information processing systems.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. Advances in neural
information processing systems, 33:22118–22133.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li,
and Li Fei-Fei. 2018. Mentornet: Learning data-
driven curriculum for very deep neural networks on
corrupted labels. In International Conference on
Machine Learning.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi.
2003. Marginalized kernels between labeled graphs.
In Proceedings of the 20th international conference
on machine learning (ICML-03), pages 321–328.

Thomas N Kipf and Max Welling. 2017a. Semi-
supervised classification with graph convolutional
networks. International Conference on Learning
Representations.

https://doi.org/10.18653/v1/2022.acl-long.520
https://doi.org/10.18653/v1/2022.acl-long.520
https://doi.org/10.18653/v1/2022.acl-long.520
"https://dl.acm.org/doi/pdf/10.1145/1553374.1553380"
"https://ieeexplore.ieee.org/document/1565664"
"https://www.ecmlpkdd2013.org/wp-content/uploads/2013/09/lml2013_api_sklearn.pdf"
"https://www.ecmlpkdd2013.org/wp-content/uploads/2013/09/lml2013_api_sklearn.pdf"
"https://proceedings.neurips.cc/paper/2020/hash/2cfa8f9e50e0f510ede9d12338a5f564-Abstract.html"
"https://proceedings.neurips.cc/paper/2020/hash/2cfa8f9e50e0f510ede9d12338a5f564-Abstract.html"
https://doi.org/10.18653/v1/2023.acl-long.104
https://doi.org/10.18653/v1/2023.acl-long.104
"https://proceedings.mlr.press/v70/gilmer17a/gilmer17a.pdf"
"https://proceedings.mlr.press/v70/gilmer17a/gilmer17a.pdf"
"https://proceedings.mlr.press/v70/graves17a/graves17a.pdf"
"https://proceedings.mlr.press/v70/graves17a/graves17a.pdf"
"https://www.osti.gov/biblio/960616"
"https://www.osti.gov/biblio/960616"
"https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf"
"https://papers.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf"
"https://papers.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf"
"https://proceedings.mlr.press/v80/jiang18c/jiang18c.pdf"
"https://proceedings.mlr.press/v80/jiang18c/jiang18c.pdf"
"https://proceedings.mlr.press/v80/jiang18c/jiang18c.pdf"
"https://dl.acm.org/doi/10.5555/3041838.3041879"


Thomas N. Kipf and Max Welling. 2017b. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Julia Kreutzer, David Vilar, and Artem Sokolov. 2021.
Bandits don’t follow rules: Balancing multi-facet
machine translation with multi-armed bandits. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 3190–3204, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Nils M Kriege, Fredrik D Johansson, and Christopher
Morris. 2020. A survey on graph kernels. Applied
Network Science, 5(1):1–42.

John P. Lalor and Hong Yu. 2020. Dynamic data se-
lection for curriculum learning via ability estimation.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 545–555, Online.
Association for Computational Linguistics.

Bruce W Lee, Yoo Sung Jang, and Jason Lee. 2021a.
Pushing on text readability assessment: A trans-
former meets handcrafted linguistic features. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10669–
10686.

Bruce W. Lee, Yoo Sung Jang, and Jason Lee. 2021b.
Pushing on text readability assessment: A trans-
former meets handcrafted linguistic features. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10669–
10686, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Haoyang Li, Xin Wang, and Wenwu Zhu. 2023. Cur-
riculum Graph Machine Learning: A Survey. arXiv
e-prints, page arXiv:2302.02926.

Fenglin Liu, Shen Ge, and Xian Wu. 2021. Competence-
based multimodal curriculum learning for medical
report generation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3001–3012, Online. Association for
Computational Linguistics.

Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu,
Zhen Wang, Ke Liang, Wenxuan Tu, Liang Li, Jing-
can Duan, and Cancan Chen. 2023. Hard sample
aware network for contrastive deep graph clustering.
In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pages 8914–8922.

Adyasha Maharana and Mohit Bansal. 2022. On cur-
riculum learning for commonsense reasoning. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

pages 983–992, Seattle, United States. Association
for Computational Linguistics.

Andrew Kachites McCallum, Kamal Nigam, Jason Ren-
nie, and Kristie Seymore. 2000. Automating the con-
struction of internet portals with machine learning.
Information Retrieval, 3(2):127–163.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham
Neubig, Barnabás Póczos, and Tom Mitchell. 2019.
Competence-based curriculum learning for neural
machine translation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1162–1172.

Shreyas Saxena, Oncel Tuzel, and Dennis DeCoste.
2019. Data parameters: A new family of parameters
for learning a differentiable curriculum. Advances in
Neural Information Processing Systems.

Burr Settles and Brendan Meeder. 2016. A trainable
spaced repetition model for language learning. In
Proceedings of the 54th annual meeting of the associ-
ation for computational linguistics (volume 1: Long
papers), pages 1848–1858.

Diana Sousa, André Lamúrias, and Francisco M Couto.
2019. A silver standard corpus of human phenotype-
gene relations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers).

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293.

Nidhi Vakil and Hadi Amiri. 2022. Generic and trend-
aware curriculum learning for relation extraction. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2202–2213, Seattle, United States. Association
for Computational Linguistics.
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A Appendix

A.1 Graph Indices Definition

Below are the list of 26 indices which we consider
for TGCL. All these indices are computed on the
subgraph of the node or an edge. These definition
and code to calculate the indices, we used Net-
workx package (Hagberg et al., 2008).

• Degree: The number of immediate neighbors
of a node in a graph.

• Treewidth min degree: The treewidth of an
graph is an integer number which quantifies,
how far the given graph is from being a tree.

• Average neighbor degree: Average degree
of the neighbors of a node is computed as:

1

|Ni|
∑
j∈Ni

kj

where Ni is the set of neighbors of node i and
kj is the degree of node j.

• Degree mixing matrix: Given the graph, it
calculates joint probability, of occurrence of
node degree pairs. Taking the mean, gives the
degree mixing value representing the given
graph.

• Average degree connectivity: Given the
graph, it calculates the average of the near-
est neighbor degree of nodes with degree k.
We choose the highest value of k obtained
from the calculation and used its connectivity
value as the complexity index score.

• Degree assortativity coefficient: Given the
graph, assortativity measures the similarity of
connections in the graph with respect to the
node degree.

• Katz centrality: The centrality of a node, i,
computed based on the centrality of its neigh-
bors j. Katz centrality computes the relative
influence of a node within a network by mea-
suring taking into account the number of im-
mediate neighbors and number of walks be-
tween node pairs. It is computed as follows:

xi = α
∑
j

Aijxj + β

where xi is the Katz centrality of node i, A is
the adjacency matrix of Graph G with eigen-
values λ. The parameter β controls the initial
centrality and α < 1 / λmax.

• Degree centrality: Given the graph, the de-
gree centrality for a node is the fraction of
nodes connected to it.

• Closeness centrality: The closeness of a node
is the distance to all other nodes in the graph
or in the case that the graph is not connected
to all other nodes in the connected component
containing that node. Given the subgraph and
the nodes, added the values of the nodes to
find the complexity index value.

• Eigenvector centrality: Eigenvector central-
ity computes the centrality for a node based
on the centrality of its neighbors. The eigen-
vector centrality for node i is Ax = λx. where
A is the adjacency matrix of the graph G with
eigenvalue λ.

• Group Degree centrality: Group degree cen-
trality of a group of nodes S is the fraction
of non-group members connected to group
members.

• Ramsey R2: This computes the largest clique
and largest independent set in the graph G.
We calculate the index value by multiplying
number of largest cliques to number of largest
independent set.

• Average clustering: The local clustering of
each node in the graph G is the fraction of
triangles that exist over all possible triangles
in its neighborhood. The average clustering
coefficient of a graph G is the mean of local
clusterings.

• Resource allocation index: For nodes i and
j in a subgraph, the resource allocation index
is defined as follows:∑

k∈(Ni
⋂

Nj)

1

|Nk|
,

which quantifies the closeness of target nodes
based on their shared neighbors.

• Subgraph density: The density of an undi-
rected subgraph is computed as follows:

e

v(v − 1)
,



where e is the number of edges and v is the
number of nodes in the subgraph.

• Local bridge: A local bridge is an edge that
is not part of a triangle in the subgraph. We
take the number of local bridges in a subgraph
as a complexity score.

• Number of nodes: Given the graph G, num-
ber of nodes in the graph is chosen as the
complexity score.

• Number of Edges: Given the graph G, num-
ber of edges in the graph is chosen as the
complexity score.

• Large clique size: Given the graph G, the
size of a large clique in the graph is chosen as
the complexity score.

• Common neighbors: Given the graph and the
nodes, it finds the number of common neigh-
bors between the pair of nodes. We chose
number of common neighbors as the complex-
ity score.

• Subgraph connectivity: is measured by the
minimum number of nodes that must be re-
moved to disconnect the subgraph.

• Local node connectivity: Local node connec-
tivity for two non adjacent nodes s and t is
the minimum number of nodes that must be
removed (along with their incident edges) to
disconnect them. Given the subgraph and the
nodes, gives the single value which we used
as complexity score.

• Minimum Weighted Dominating Set: For a
graph G = (V,E), the weighted dominating
set problem is to find a vertex set S ⊆ V such
that when each vertex is associated with a pos-
itive number, the goal is to find a dominating
set with the minimum weight.

• Weighted vertex cover index: The weighted
vertex cover problem is to find a vertex cover
S–a set of vertices that include at least one
endpoint of every edge of the subgraph–that
has the minimum weight. This index and
the weight of the cover S is defined by∑

s∈S w(s), where w(s) indicates the weight
of s. Since w(s) = 1, ∀s in our unweighted
subgraphs, the problem will reduce to finding
a vertex cover with minimum cardinality.

• Minimum edge dominating set: Minimum
edge dominating set approximate solution to
the edge dominating set.

• Minimum maximal matching: Given a
graph G = (V,E), a matching M in G is a set of
pairwise non-adjacent edges; that is, no two
edges share a common vertex. That is, out
of all maximal matchings of the graph G, the
smallest is returned. We took the length of the
set as the complexity index.

A.2 Linguistics Indices

Below are the list of linguistic (Lee et al., 2021b)
indices used in our experiments. We follow (Lee
et al., 2021b) to measure all scores.

Traditional Formulas (TraF) These features
computes the readability score of the given text
based on the content, complexity of its vocabu-
lary and syntactic information. Readability can be
defined as the ease with which a reader can under-
stand a written text.

• Gunning Fog Count score: The Gun-
ning fog index is a readability test for En-
glish writing. It commonly used to con-
firm that text can be read easily by the in-
tended audience. It is computed as follows:
0.4

[(
words

sentences

)
+ 100

(
complexwords

words

)]
where words is the number of words, sen-
tences is the number of sentences, and com-
plexwords is the number of complex words

• New Automated readability index: The au-
tomated readability index is a readability test
for texts, which determines the understand-
ability of a text. It is computed as follows:

4.71
[(

characters
words

)
+ 0.5

(
words

sentences

)]
where characters is the number of letters and
numbers, words is the number of spaces, and
sentences is the number of sentences.

• Flesch Kincaid Grade level: This readability
test is design to determine how difficult is the
given text to understand. It can be computed
as follows:

0.39
[(

words
sentences

)
+ 11.8

(
syllables
words

)]
where words is the total number of words,
sentences is the total number of sentences,
and syllables is the total number of syllables



• Linsear Write Formula score: It is a read-
ability metric for text originally developed to
calculate the readability of technical manuals.
It can be computed as follows:

Algorithm 3: Compute Linsear Write score

1 Initialize r = 0
2 For each easy word, defined as word with 2 syllables

or less r = r + 1
3 For each hard word, defined as word with 3 syllables

or more r = r + 3

r =
r

sentences

where sentences = number of sentences in 100 word
sample

4 if r > 20, LinsearWritescore = r
2

5 if r =< 20, LinsearWritescore = r
2
− 1

• Coleman Liau Readability Score: The Cole-
man–Liau index is calculated as follows:

0.0588 ∗ L− 0.296 ∗ S − 15.8

where L is the average number of letters per
100 words, S is the average number of sen-
tences per 100 words

• SMOG Index: SMOG index can be calcu-
lated as follows:
1.0430 ∗ (polysyllables ∗ 30

sentences
)1/2 + 3.1291

Shallow Features (ShaF) These features cap-
tures the surface level difficulties. Features used
are as follows:

• Average count of characters per token: The
average count of characters per token is taken
as the complexity score.

• Average count of characters per sentence:
The average count of characters per sentence
is taken as the complexity score.

• Average count of syllables per token: The
average count of syllables per token is taken
as the complexity score.

• Average count of syllables per sentence:
The average count of characters per syllables
is taken as the complexity score.

• Sentence length: computed by count of token
per sentence

• Token sentence ratio: computed by the log
of total count of tokens divided by the log of
total count of sentences.

• Token sentence multiply: computed by the
total count of tokens multiply by the total
count of sentences, and its square root.

A.3 TGCL Exploits All Ranking Orders
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Figure 7: The distribution of indices used for training
based on their ordering strategy. Overall, scheduler
(a): relies more on ascending order in the case of PGR
and (b): relies almost equally on all order types in the
case of Ogbn-Arxiv. The use of medium ascending
order is in line with recent studies showing the impor-
tance of using medium-level samples for effective train-
ing (Swayamdipta et al., 2020).

Figures 7a and 7b show the distribution of in-
dices used for training based on to their ordering
strategy (see §2.1 and Algorithm 1) during different
phases of training. As mentioned before, complex-
ity scores can be sorted in four ways: ascending,
descending, medium ascending, and medium de-
scending orders, which represent easy-to-hard or
hard-to-easy order types. The results on the PGR
dataset show that in the initial phase of training the
scheduler uses all order types, while emphasizing
most on ascending followed by descending orders.
And, in the mid and late training phases, the model
prioritizes the ascending difficulty order over the
other orders with a fairly larger difference in usage.
The results on Ogbn-Arxiv show that TGCL relies
equally on all order types during its training with
a slightly greater emphasis on descending order at
the latter stages of training. The relatively signif-
icant use of medium ascending order, especially



at the early stage of training, is in line with recent
studies showing the importance of using medium-
level samples for effective training (Swayamdipta
et al., 2020).

A.4 Fine-grained Index Analysis

Figure 8 shows fine-grained analysis for Ogbn-
Arxiv when linguistic indices are included along
with the graph indices. In the Phase-1, scheduler
focuses on all the indices with more frequency of
SraF based indices from linguistics, and Ramsey
and degree based indices from graph features. In
the Phase-2, the overall use of all the indices is
reduced and it focuses more on readability indices
(TraF) from linguistics features, and uses Ramsey
R2 more from the graph indices. In Phase-3, sched-
uler uses very less indices at the end of the training
and focuses on the average count of characters per
sentence from linguistic features and degree assor-
taivity coefficient from the graph indices.

As shown in the Figure 9 for PGR dataset, cen-
trality and degree based indices are used more fre-
quently. Closeness centrality, density, and degree
assortativity coefficient indices are used more fre-
quently in Phase-1 and Phase-2, initial part and
middle part of training. In the final phase of the
training Phase-3, scheduler focuses on closeness
centrality and degree connectivity based indices
more frequently.

As shown in the Figure 10, for Ogbn-Arxiv
dataset, basic and degree based indices are used
more frequently. In the initial phase of training, as
the threshold is high (η) scheduler uses all avail-
able indices. In the Phase-2, scheduler uses degree
centrality, Ramsey R2 and degree assortativity coef-
ficient more frequently. In Phase-3 scheduler uses
local bridge, degree and degree centrality more
frequently compare to the other indices.

A.5 Selection Process for Complexity Indices

To avoid the over representation of similar indices,
we group indices based on their similarity. For this
purpose, we compute the Pearson Co-relation co-
efficient between complexity scores of each pair
of indices and create an n × n correlation matrix
(where, n is the total number of indices). We use
this co-relation matrix as an input to K-means and
empirically group the indices into 10 clusters. We
randomly select one metric from each cluster for
use in our curriculum framework. See indices with
⋆ labels in Table 1. Here, ⋆ indicates the indices

were used in one of the dataset used in the experi-
ments.

A.6 Detailed results
Table 5 shows the performance of TGCL model
with different kernel functions for all the datasets
on GTNN as the base model.
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Figure 8: Fine grained indices priority for Ogbn-Arxiv with linguistic indices

GNN TGCL Ogbn-Arxiv Cora Citeseer GDPR PGR
Model Kernel Acc Acc Acc F1 F1

G
T

N
N

cos 76.3 95.9 76.1 85.4 94.5
gau 76.2 95.6 75.8 85.1 94.5
lap 76.4 95.2 76.1 85.3 89.2
lin 75.7 95.6 76.1 84.4 87.9
sec 76.2 95.6 77.8 84.3 94.5
qua 75.9 96.7 77.7 85.0 93.2

Table 5: F1 and Accuracy performance of TGCL model for different kernel functions on node classification
(Ogbn-Arxiv, Cora, and Citeseer datasets), and link prediction (GDPR and PGR datasets) using GTNN as base
GNN model.
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Figure 9: Fine grained indices priority for edge predic-
tion task.
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Figure 10: Fine grained indices priority for node predic-
tion task.


